

Руководство по выбору

Приводы большой мощности VLT для ваших применений

Содержание

Легко эксплуатировать,	
спроектирован специально для вашего применения	
Встроенные опции и функции. Для самых сложных применений	6
Разумный подход к отводу тепла	8
Простота настроек, эксплуатации и обслуживания	9
Сертификаты	
Пользовательский интерфейс — разработан с участием пользователей	10
VLT® AutomationDrive	
VLT® AutomationDrive (FC 302) 380-500 В — Высокая перегрузка	
VLT® AutomationDrive (FC 302) 380-500 В — Нормальная перегрузка	13
VLT® AutomationDrive (FC 302) 525-690 В — Высокая перегрузка	14
VLT® AutomationDrive (FC 302) 525-690 В — Нормальная перегрузка	15
VLT® AQUA Drive	16
VLT® AQUA Drive — Нормальная перегрузка	18
VLT® HVAC Drive	20
VLT® HVAC Drive — Нормальная перегрузка	22
VLT® 6-Pulse Drives	24
Новый типоразмер D VLT® Drive	25
Решения по подавлению гармонических искажений	26
VLT® 12-Pulse Drives	27
VLT® Advanced Active Filters – Характеристики	28
VLT® Low Harmonic Drive	
VLT® High Power Drive размеры мм — Типоразмер D	
VLT® High Power Drive размеры мм — Типоразмеры E и F	
VLT® 12-pulse размеры мм	
VLT® Advanced Active Filter (фильтры AAF) размеры мм	
VLT® Low Harmonic Drive размеры мм	
VLT® High Power Drive специальные условия работы	
VLT® Advanced Harmonics Filters (фильтры AHF)	40
VLT® Advanced Harmonic Filter — (фильтры AHF)	
Коды для заказа и размеры мм	41
Выходные фильтры	
VLT® Фильтры синфазных помех	
VLT® Выходной фильтр du/dt — Размеры и характеристики	
VLT® Синусоидальный фильтр — Размеры и характеристики	
VLT® Тормозные резисторы	
Конфигуратор привода VLT®	
Опции и обозначение их в типовом коде	53
VLT® High Power Drive Дополнительные акссесуары	
Дополнительные акссесуары для применений	54
VLT® High Power Drive Опции	
Опции, модули сетевых протоколов и специальных применений	
VLT® High Power Drive Программное обеспечение	
Заказные коды для типоразмера D и Е	
Заказные коды для типоразмера F	70

Легко эксплуатировать

спроектирован специально для вашего применения

Часть семейства VLT®

Приводы большой мощности серии VLT компании Danfoss являются продолжателями известной марки VLT, созданной в 1968 году, когда компания Danfoss впервые предложила мировому рынку серийные частотно-регулируемые приводы.

Приводы большой мощности серии VLT обладают всеми преимуществами, с которыми вы уже знакомы по опыту применения приводов меньшей мощности, включая простоту наладки и эксплуатации.

Кроме того, приводы большой мощности предлагаются с большим количеством современных и простых в использовании функций и опций, встраиваемых и тестируемых на заводе, чтобы соответствовать требованиям любых применений.

Экономия времени

Приводы VLT разработаны с учетом требований монтажа и эксплуатации для экономии времени при установке, пусконаладочных работах и обслуживании.

Приводы большой мощности VLT разработаны с учетом полного доступа спереди к любым частям привода. Необходимо только открыть дверцу шкафа, где все элементы находятся в пределах досягаемости, не требуется снимать привод, даже если несколько приводов смонтированы бок о бок.

- Интуитивный пользовательский интерфейс с панелью местного управления LCP, удостоенной наград, обеспечивает удобство настройки и эксплуатации.
- Вся линейка приводов разных типов использует общую платформу управления, которая обеспечивает единый интерфейс и предсказуемое функционирование.
- Благодаря прочности конструкции и эффективному контролю приводы VLT практически не требуют обслуживания.

Экономия места

Компактность конструкции приводов VLT — и приводов VLT большой мощности в особенности — позволяет легко установить их в ограниченном пространстве.

Встроенные фильтры, дополнительные устройства и принадлежности обеспечивают дополнительные возможности и защиту, что не требует увеличения размеров корпуса.

- Встроенные дроссели цепи постоянного тока для подавления гармоник делают ненужными внешние сетевые дроссели переменного
- В большинстве серий во всем диапазоне мощностей предлагаются дополнительные встраиваемые фильтры ВЧ-помех
- Для всех типов корпусов предлагаются дополнительные входные предохранители и разъединители сети.

Пусть специалисты Danfoss станут вашими партнерами. Непревзойденный опыт компании Danfoss в сочетании с обширными знаниями областей применения позволяет нашим специалистам из отдела продаж и обслуживания стать надежными партнерами, готовыми в любое время суток прийти вам на помощь в 120 странах.

■Помимо стандартных функций, встроенных в приводы большой мощности VLT предлагается ряд опций управления, мониторинга и силовых опций, которые могут быть сконфигурированы и установлены на заводе.

Экономия денег

Приводы большой мощности VLT обеспечивают высокий КПД, благодаря применению современных силовых компонентов.

- КПД >98% снижает эксплуатационные расходы
- Уникальная конструкция воздушного канала охлаждения снижает, а в ряде случаев устраняет необходимость в дополнительном оборудовании для охлаждения, что позволяет сократить расходы на монтаж
- Снижение потребляемой мощности вентиляционного оборудования в помещении управления
- Сокращение затрат на обслуживание.

Привод VLT® AutomationDrive

VLT AutomationDrive реализует концепцию единого привода, который может управлять любыми двигателями: от асинхронных двигателей до сервоприводов на постоянных магнитах на любом механизме или производственной линии. В серийные модели заложен большой диапазон функций, таких как, функциональность ПЛК, автоматическая точная настройка управления двигателем и самодиагностика функционирования. Имеются также возможности позиционирования, синхронизации, программируемого управления движением и управления сервоприводом. Все модели приводов имеют единый пользовательский интерфейс, поэтому если вы поработали с одним, вы можете работать со всеми другими.

- Встроенный интеллектуальный логический контроллер
- Работа с постоянным и переменным моментом
- Безопасный останов категории 3
- Распределение нагрузки и возможности динамического торможения.

Привод VLT® HVAC Drive

Устанавливая новые стандарты, привод VLT HVAC Drive органично встраивается в системы отопления, вентиляции и кондиционирования. Большой опыт Danfoss в области современных частотно-регулируемых приводов для применения в системах HVAC позволил предложить уникальный продукт. Привод VLT HVAC Drive подходит для различных применений: от простого поддержания технологического параметра до автономной работы без внешних контроллеров. От "просто привода" до комплексного решения привод VLT HVAC Drive — это экономичное, гибкое и удобное устройство для применения во многих системах HVAC.

- Система управления VLT HVAC Intelligent Control с четырьмя ПИД-регуляторами с автонастройкой, с несколькими контурами подчинённого ПИД-регулирования
- ■Встроенный коммуникационные протоколы Johnson Controls Metasys N2, Siemens Apogee FLN и Modbus RTU; LonWorksR и BACnet™ (опции)
- Часы реального времени

Привод VLT® AQUA Drive

Это единственный на рынке специализированный привод для систем водоснабжения и водоотведения, привод VLT AQUA Drive имеет широкий набор стандартных функций и опций, спроектированных для работы в этой конкретной области. Специфические насосные функции обеспечивают защиту дорогостоящего оборудования, независимое управления и гибкость. А такие функции, как управление без датчиков, автоматическая оптимизация энергопотребления и автоматическая адаптация двигателя требуют от владельца привода VLT AQUA Drive минимальных расходов в сравнении с любым существующим приводом.

- Обнаружение сухого хода насоса
- Улучшенный режим ожидания
- Режим заполнения пустой трубы
- Контроль утечки
- Компенсация падения давления в длинных трубах
- Уменьшение старения насоса

Изготовлены в соответствии с высокими стандартами качества

Приводы серии VLT® сертифицированы по UL и производятся на предприятиях, прошедших сертификацию на соответствие требованиям ISO 9001-2000.

Встроенные опции и функции

Для самых сложных применений

Модульная концепция VLT®

Приводы VLT® AutomationDrive, VLT® HVAC Drive и VLT AQUA Drive спроектированы на единой платформе, что дает возможность максимально учитывать запросы конкретного заказчика на серийных приводах, проверяемых изготовителем и поставляемых под заказ. Обновления и новые опции выполняются по технологии plug-and-play. Они используют те же характеристики и общий пользовательский интерфейс, поэтому, зная один, вы знаете все.

Корпус

В зависимости от условий установки, приводы большой мощности VLT® выпускаются в трех исполнениях корпуса:

■ ІР 00/Шасси

Для установки в шкафах. Доступны набора для увеличения защиты до IP20.

■ IP20/Защищенное шасси

Для установки в шкафах. Имеет опцию безопасного касания для защиты от случайных контактов с электрическими компонентами.

■ IP 21/NEMA Тип 1

Корпус защищен от попадания мелких объектов внутрь (например, пальцы) и не может быть поврежден вертикально или почти вертикально капающей водой.

Для использования в помещениях.

■ IP 54/NEMA Тип 12

Корпус защищен от пыли и от брызг, падающих в любом направлении

Для использования в помещениях.

Удобство обслуживания

Ко всем узлам имеется удобный доступ с передней части привода, что упрощает обслуживание и позволяет устанавливать приводы в ряд. Блочная конструкция приводов VLT® существенно облегчает замену компонентов.

Максимальный КПД двигателя

Для автоматической оптимизации энергопотребления в приводах серии VLT используются возможности векторного принципа управления, которые обеспечивают максимальное намагничивание двигателя, сведение к минимуму пассивных вредных токов и магнитного потока

Это означает минимум потерь мощности.

КПД очень важен для приводов большой мощности

Большое внимание при разработки преобразователей частоты VLT® конструкторы компании Danfoss уделяли КПД. Непревзойденная энергоэффективность является результатом инновационной конструкции и использования высококачественных компонентов. Приводы VLT® передают на двигатель до 98% энергии, полученной из сети. Отводить необходимо только около 2% мощности, рассеиваемой силовой электроникой.

Сберегается энергия, а электроника работет дольше, потому что она не подвергается воздействию высоких температур внутри корпуса.

Конформное покрытие

Электронные элементы с конформным покрытием — согласно IEC 60721-3-3, класс 3C3 — предусмотрены для всех приводов. Покрытие соответствует стандарту ISA S71.04.1985, класс G3.

Воздушный канал из нержавеющей стали

Как опция воздушный канал охлаждения может быть изготовлен из нержавеющей стали вместе с антикоррозионным покрытием радиатора для более надежной защиты в тяжелых условиях, например, при насыщенности воздуха солью в прибрежных районах.

Техника безопасности

Приводы VLT AutomationDrive можно заказать с функцией безопасного останова, пригодной для установок категории 3 в соответствии с требованиями стандарта EN 954-1. Эта функция исключает непреднамеренный запуск привода.

Коммуникационные опции

Опции для коммуникации (Profibus, DeviceNet, CanOpen, Ethernet и т.п.), синхронизации, внешнего управления и т.п., поставляются готовыми к установке по принципу plug and play.

Для тяжелых условий эксплуатации предусмотрены печатные платы с защитным покрытием

Для отключения проводов управления нужно лишь вынуть клеммные колодки.

Сетевую шину (опция) можно без подготовки ставить под лицевой панелью.
Ее можно перевернуть, если кабель должен быть вверху.

■ Обратная связь и опции расширения входов/выходов

- Энкодер
- Резольвер
- Расширение входов/выходов общего назначения
- Дополнительные релейные выходы

В Вход напряжения питания 24 В

Позволяет подключить внешний источник бесперебойного питания 24 В для обеспечения "работоспособности" логических цепей привода при отключении силового питания.

4 Программируемые опции

Встраиваемый программируемый контроллер МСО 305 для задач синхронизации, позиционирования и управления движением. Предлагаются также параметрируемые опции для синхронизации (МСО 350) или позиционирования (МСО 351).

Б Дисплей и интерфейс

Знаменитая съемная панель управления Local Control Panel (LCP) для приводов Danfoss имеет улучшенный пользовательский интерфейс, разработанный с учетом мнений пользоваталей и обеспечивающий непревзойденную простоту применения. Панель управления может подключаться и отключаться во время работы. Настройки легко переносятся с одного привода на другой с помощью панели управления. Кнопка "Info" обеспечивает прямой доступ к встроенной справке, что делает руководство на бумажном носителе практически ненужным. Автоматическая адаптация двигателя, меню быстрой настройки и большой графический дисплей облегчают пусконаладочные работы и эксплуатацию.

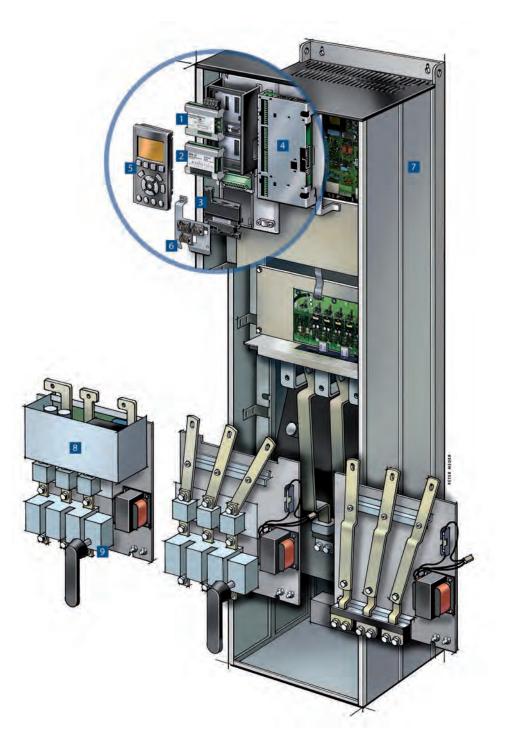
6 Сигналы управления

Специальные подпружиненные клеммные зажимы типа Cage Clamp повышают надежность и упрощают пусконаладочные работы и обслуживание.

Дроссель в цепи постоянного тока

Встроенный дроссель постоянного тока обеспечивает низкий уровень гармонических искажений питающего напря-

жения в соответствии с требованиями стандарта IEC-1000-3-2. В результате компактная конструкция не требует внешних входных дросселей.

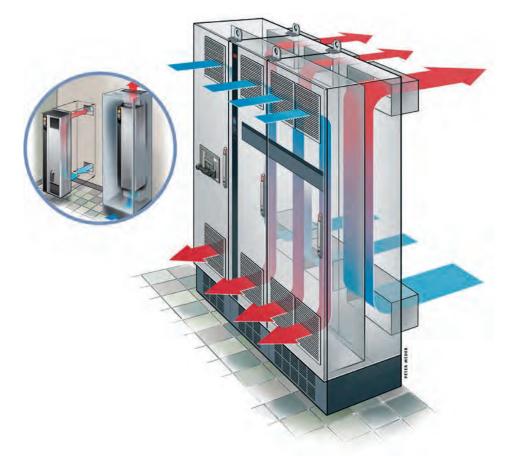

В ВЧ-фильтр

Все приводы большой мощности предлагаются с ВЧ-фильтром класса A2/C3 в соответсвии с IEC 61000 и EN 61800. Для всех приводов 380-500В и приводов 525-690В типоразмера D в качестве

дополнительной опции предлагается ВЧ-фильтр класса A1/C2 соответсвующий IEC 61000 и EN 61800.

9 Входные опции

Предлагаются различные входные сетевые опции, включая предохранители, разъединитель сети (рубильник) или ВЧ-фильтр. Сетевые опции могут быть добавлены в последствии, если они не были выбраны при заказе привода.


Разумный подход

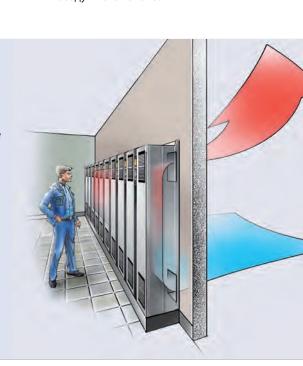
к отводу тепла

Воздушный канал охлаждения

Разумный подход к отводу тепла в приводах VLT обеспечивает удаление 85% теплопотерь через радиаторы, которые передают тепло охлаждающему воздуху в специальном канале. Этот канал изолирован от электронных блоков с защитой ІР 54. Такой способ охлаждения существенно снижает степень загрязнения зоны электронных устройств управления, обеспечивая больший срок службы и повышение надежности. Остальные 15% теплопотерь выводятся из зоны электронных устройств управления с помощью вентиляторов малой производительности через дверцы. Избыток тепла из воздушного канала рассеивается в помещении или может сразу выводиться из этой зоны. Для установки приводов с классом защиты IP 00/IP20 Шасси в корпуса Rittal TS8 предлагается дополнительный монтажный комплект.

- Разделение каналов охлаждения для силовых и электронных узлов
- 85% теплопотерь выводится через воздушный канал
- Воздушный канал можно проложить снаружи, это снизит нагрев в помещении управления и снизит эксплуатационные расходы
- Степень защиты IP 54 между зонами силовых и управляющих устройств

- Уменьшение потока воздуха, проходящего через блок управления корпуса, снижает объем загрязнения, попадающего на электронные блоки управления
- Два варианта отвода тепла: через вентиляционные отверстия задней стенки или забор воздуха снизу и выпуск через верхнюю решетку воздушного канала.


ДО 10 приводов, установленных "стенка-к-стенке"

На стене длиной 6 метров можно установить до 10 приводов, которые обеспечивают 6,3 МВт (при 690 В) или 4,5 МВт (при 400 В).

Отсутствие зазора, монтаж «стенка к стенке»

На стене длиной 6 метров можно установить до 10 приводов, которые обеспечивают 6,3 МВт (при 690 В) или 4,5 МВт (при 400 В).

Тепловые потери составляют менее 95 кВт. Если приводы установлены на наружной стене, а охлаждающий канал выведен непосредственно наружу, в помещении рассеивается менее 10 кВт теплопотерь.

Простота настроек,

эксплуатации и обслуживания

Наименьшие размеры в своем классе

Даже типоразмеры F (самые большие для приводов VLT High Power Drive) все же одни из самых маленьких в своем диапазоне мощности. Внутренние элементы размещены в шкафу инвертора, шкафу выпрямителя, и — если требуется — в шкафу для опций что обеспечивает удобство доступа во время пусконаладочных работ и обслуживания.

Уникальность поддержки и обслуживания

Сервисное обслуживание приводов Danfoss доступно в 120 странах, в том числе на всей территории России.

Кроме того, Danfoss предлагает сервисные договора, возлагая на себя обязательства по обслуживанию и ремонту приводов. Компания предлагает доступные услуги, которые позволют вам воспользоваться непревзойденной репутациией Danfoss по качеству обслуживания и оперативности по всему миру:

- Обучение сервисному обслуживанию оборудования представителей заказчика.
- ■Техническая поддержка
- Модули, предлагаемые производителем для быстрой замены

Техническая поддержка

Компания "Данфосс" имеет более 40 сервисных партнеров в различных городах России.

■ Гибкие схемы обслуживания с фиксированными ценами, которые снижают общие расходы на обслуживаниезаказчика.

Серия приводов большой мощности VLT® сертифицирована в соответствии с ГОСТ Р и имеет разрешение Федеральной Службы по Экологическому, Технологическому и Атомному надзору (Ростехнадзор). Соответствует международным стандартам и внесена в морские регистры:

Основанная в 1864 году , DNV является независимой организацией, цель которой — безопасность жизни, имущества и окружающей среди.

Русский Регистр, классификационное общество, было образовано 31 декабря 1913 года. Сегодня оно имеет название Российский Морской Регистр Судостроения. Начиная с 1969 года Регистр является членом Международной Ассоциации Классификационных Обществ.

Lloyd's Register Group — это организация, которая работает на рынке страхования имущества и систем в море, на суше и в воздухе.

Основанное в 1828 году, Бюро Веритас, было одним из первых классификационных обществ и основателем Международной Ассоциации Классификационных Обществ.

ABS Consulting — это ведущая **ABS** независимая организация, предоставляющая услуги по управлению рисками, которая объединяет промышленных экспертов, средства моделирования рисков, прикладное проектирование и решения на базе технологий.

Основанное в 1956 году, Китайское Классификационное Общество, является единственной организацией в Китае предо-. ставляющей услуги классификации. Целью Общества является обеспечение морских перевозок, строительства судов и обеспечивающих отраслей промышленности и морского страхования.

Встроенные опции и функции

Для самых сложных применений

Прафический дисплей

- Буквы иностранных алфавитов и специальные символы
- Вывод информации в графической форме с использованием гистограмм
- Удобство обзора
- Выбор из 27 языков
- Дизайн, отмеченный наградой iF

Структура меню

- Основана на хорошо известной матричной системе, применяемой в современных приводах VLT
- Простой метод быстрого доступа для опытных пользователей
- Возможность одновременного редактирования разных наборов па-

раметров и одновременной работы с разными наборами параметров

В Прочие преимущества

- Возможность демонтажа во время
- Функции передачи и загрузки данных
- Степень защиты ІР 65/NEMA 4 при монтаже на двери панели. (Предлагается комплект для дистанционно-
- Одновременное отображение 5 различных рабочих параметров
- Ручная настройка числа оборотов/ крутящего момента
- Тип и объем выводимой информации полностью определяются пользователем

- Быстрое меню, определенное пользователем
- Меню внесенных изменений с перечнем параметров, специфических для вашей области применения
- Меню настройки функций обеспечивает быструю и простую настройку для специфических областей применения
- Меню регистрации данных обеспечивает доступ к архиву эксплуатационных данных

6 Интуитивно понятные функции

- Info («Встроенная справочная систе-
- Cancel («Отмена»)
- Alarm log («Журнал аварий»)

The VLT® AutomationDrive

Привод VLT Automation Drive является универсальным приводом, который может управлять любым типом двигателя, от асинхронного до синхронного, установленных на любых агрегатах и производственных линиях.

Благодаря своей гибкой конструкции с возможностью подключения опций привод может быть адаптирован для применения в любой области.

Стандартные преобразователи частоты имеют возможности ПЛК, тонкой настройки и управления двигателями и мониторинга своей работы. Приводы «Данфосс» могут осуществлять позиционирование, синхронизация, выполнять запрограммируемые действия и управлять серводвигателями. Все

версии преобразователей имеют одинаковый пользовательский интерфейс, что упрощает их эксплуатацию.

Диапазон мощностей

■ 380-480/500 B

Нормальная перегрузка:

400 В110-1000 кВт, 212-1720 А 460 В150-1350 л.с., 190-1530 А

Высокая перегрузка:

400 B90-800 κBτ, 177-1460 A 460 B125-1200 л.с., 160-1380 A

■ 525-690 B

Нормальная перегрузка:

575 В75-1550 л.с., 86-1415 А 690 В75-1400 кВт, 86-1415 А

Высокая перегрузка:

575 В 60-1350 л.с., 73-1260 А 690 В55-1200 кВт, 73-1260 А

Степень защиты

■ IP 00, IP 20, IP 21 и IP 54.

Опции

См. стр. 53.

Более полная информация в руководстве по проектированию, MG34.xx.yy, которое можно загрузить по следующей ссылке www.danfoss.com/products/literature/technical+documentation.htm

Промышленные применения:

Применение	Горнодобывающая и цементная	Химия	Пищевая промыщленность	Обработка материалов	Текстильная промышленность
Винтовой конвейер			•		
Шаровая мельница	•				
Молотковый смеситель					
Ленточный конвейер					
Накат с центральной намоткой					•
Вентилятор					
Hacoc					
Центрифуга					
Компрессор					
Конусная дробилка					
Конвейер для охлаждения/плавки отливок			•	•	
Кран					
Декантатор					
Отводящее устройство				•	
Дозировка					
Сушилка					
Экструдер			•		
Мясорубка/ роликовая мельница					
Лебедка					
Роторная дробилка					
Дымосос					
Щековая дробилка	•				
Тестомешалка					
Смеситель					
Укладчик					•
Поршневой насос	•			•	•
Барабанная печь	•				
Винтовой компрессор					

VLT® AutomationDrive (FC 302) 380-500 В — Высокая перегрузка

				lativ			кая пере			300 3			Типкод		Типо	рразмер в заві		И
							ал пер									от степени заг	циты	
	Мощность		Быходнои гок	Выходная		Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse	VLT® Low Harmonic Drive
	[кВт]	[/	\]	[ĸE	3A]	[A]	[B _T]	8	_				_					
		Длит, І _м	Прерыв., І _{мах} (60 с)	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 2	1/IP 54	
	90	177	266	123	185	171	2031		315		62(135)	62(135)	FC-302N90KT5			D1h/D5h/D6h		
Уe	110	212	318	147	221 270	204	2289		350		62(135)	62(135)	FC-302N110T5			D1h/D5h/D6h		D12
E E	132 160	260 315	390 473	180 218	327	251 304	2923 3093		400 550		62(135) 125(275)	62(135) 125(275)	FC-302N132T5 FC-302N160T5			D1h/D5h/D6h D2h/D7h/D8h		D13 D13
400 В номинальное напряжение (380-440 В)	200	395	593	274	411	381	4039		630		125(275)	125(275)	FC-302N200T5			D2h/D7h/D8h		D13
апр	250	480	720	333	500	463	5005	İ	800		125(275)	125(275)	FC-302N250T5					
нальное на (380-440 В)	250	480	720	333	499	472	5059		700	221(487)		263(580)	FC-302P250T5	E2		E1	F8/F9	E9
6 4 4	315	600	900	416	624	590	6794	0-290	000	234(516)		270(595)	FC-302P315T5	E2		E1	F8/F9	E9
аль 380	355 400	658 695	987 1043	456 482	684 722	647 684	7498 7976	Ö	900	236(520) 277(611)		272(600) 313(690)	FC-302P355T5 FC-302P400T5	E2 E2		E1 E1	F8/F9 F8/F9	E9 E9
AMH (i)	450	800	1200	554	831	779	9031			277(011)		1004(2214)	FC-302P450T5	LZ		F1/F3	F10/F11	F18
ě	500	880	1320	610	915	857	10146	ĺ	2000			1004(2214)	FC-302P500T5			F1/F3	F10/F11	F18
B	560	990	1485	686	1029	964	10649		2000			1004(2214)	FC-302P560T5			F1/F3	F10/F11	F18
400	630	1120	1680	776	1164	1090	12490					1004(2214)	FC-302P630T5			F1/F3	F10/F11	F18
	710 800	1260 1460	1890 2190	873 1012	1309 1517	1227 1422	14244 15466		2500			1246(2748) 1246(2748)	FC-302P710T5 FC-302P800T5			F2/F4 F2/F4	F12/F13 F12/F13	
	125 л.с.	160	240	127	191	154	1828		315		62(135)	62(135)	FC-302N90KT5		D3h	D1h/D5h/D6h	1 12/1 13	
υ	150 л.с.	190	285	151	227	183	2051		350		62(135)	62(135)	FC-302N110T5		D3h			
Z H	200 л.с.	240	360	191	287	231	2089		400		62(135)	62(135)	FC-302N132T5			D1h/D5h/D6h		D13
ž	250 л.с.	302	453	241	362	291	2872		550		125(275)	125(275)	FC-302N160T5		D4h D4h	D2h/D7h/D8h		D13
ğ	300 л.с. 350 л.с.	361 443	542 665	288 353	432 530	348 427	3575 4458		630 800		125(275) 125(275)	125(275) 125(275)	FC-302N200T5 FC-302N250T5		D4h	D2h/D7h/D8h D2h/D7h/D8h		D13
В)	350 л.с.	443	665	353	529	436	4647	l	700	221(487)	123(273)	263(580)	FC-302P250T5	E2	D III	E1	F8/F9	E9
HOE 500	450 л.с.	540	810	430	645	531	6118	0-290		234(516)		270(595)	FC-302P315T5	E2		E1	F8/F9	E9
нальное н; (441-500 В)	500 л.с.	590	885	470	705	580	6672	2.	900	236(520)		272(600)	FC-302P355T5	E2		E1	F8/F9	E9
460 В номинальное напряжение (441–500 В)	550 л.с.	678	1017	540	810	667	7814			277(611)		313(690)	FC-302P400T5 FC-302P450T5	E2		E1	F8/F9	E9
WO	600 л.с. 650 л.с.	730 780	1095 1170	582 621	872 932	711 759	8212 8860					1004(2214) 1004(2214)	FC-302P45015 FC-302P500T5			F1/F3 F1/F3	F10/F11	F18 F18
В	750 л.с.	890	1335	709	1064	867	9414	İ	2000			1004(2214)	FC-302P560T5			F1/F3	F10/F11	F18
091	900 л.с.	1050	1575	837	1255	1022	11581					1004(2214)	FC-302P630T5			F1/F3	F10/F11	F18
,	1000 л.с.	1160	1740	924	1386	1129	13005		2500			1246(2748)	FC-302P710T5			F2/F4	F12/F13	
	<u>1200 л.с.</u> 110	1380 160	2070 240	1100	1649 209	1344 154	14556 1828		315		62(125)	1246(2748)	FC-302P800T5		Dah	F2/F4	F12/F13	
4.	132	190	285	165	248	183	2051	l	350		62(135) 62(135)	62(135) 62(135)	FC-302N90KT5 FC-302N110T5			D1h/D5h/D6h D1h/D5h/D6h		
ТИЕ	160	240	360	208	312	231	2089		400		62(135)	62(135)	FC-302N132T5			D1h/D5h/D6h		D13
ā ¥	200	302	453	262	393	291	2872		550		125(275)	125(275)	FC-302N160T5		D4h	D2h/D7h/D8h		D13
PQ.	250	361	542	313	470	348	3575		630		125(275)	125(275)	FC-302N200T5			D2h/D7h/D8h		D13
наг 3)	315	443	665	384	576	427	4458		800	221/407)	125(275)	125(275)	FC-302N250T5	F2	D4h	D2h/D7h/D8h	F0/F0	ГО
00 E	315 355	443 540	665 810	384 468	575 701	436 531	4647 6118	_@	700	221(487) 234(516)		263(580) 270(595)	FC-302P250T5 FC-302P315T5	E2 E2		E1 E1	F8/F9 F8/F9	E9 E9
500 В номинальное напряжение (441-500 В)	400	590	885	511	766	580	6672	0-590	900	236(520)		270(393)	FC-302P355T5	E2		E1	F8/F9	E9
на) (44	500	678	1017	587	881	667	7814			277(611)		313(690)	FC-302P400T5	E2		E1	F8/F9	E9
ИМС	530	730	1095	632	948	711	8212					1004(2214)	FC-302P450T5			F1/F3	F10/F11	F18
3 H	560	780	1170	675	1013	759	8860		2000			1004(2214)	FC-302P500T5			F1/F3	F10/F11	F18
00 B	630 710	890 1050	1335 1575	771 909	1156 1364	867 1022	9414 11581					1004(2214) 1004(2214)	FC-302P560T5 FC-302P630T5			F1/F3 F1/F3	F10/F11	F18 F18
50	800		1740	1005	1507	1129	13005		2525			1246(2748)	FC-302P03013			F2/F4	F12/F13	1 10
	1000					1344			2500				FC-302P800T5				F12/F13	
	Свяжите	сьспро	изводи	телем	по воп	росу воз	вможност	ทน นระเ	отовле	ния привод	ов больше	й мощности						

Полный код описан на страницах 68-71.

По умолчанию приводы имеют высокую перегрузку. Нормальная перегрузка устанавливается через программное обеспечение.

Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.

VLT® AutomationDrive (FC 302) 380-500 В — Нормальная перегрузка*

					Ц	орма	тьная пе	ерегг	узка			110	Типкод			размер в заві		л
			,				топал по	* *								от степени заі	циты	
	Мощность		рыходной ток	Выходная	мощность	Номинальный входный ток	Тепл. потери при макс. нагрузке **	*Выходная частота	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse	VLT® Low Harmonic Drive
	[кВт]	[/	\]	[ĸE	BA]	[A]	[Вт]	B	2									
		Длит., І,	Прерыв., І _{мах} (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 2°	1/IP 54	
	110	212	233	147	162	204	2559		315		62(135)	62(135)	FC-302N90KT5			D1h/D5h/D6h		
1e	132	260	286	180	198	251	2954		350		62(135)	62(135)	FC-302N110T5			D1h/D5h/D6h		240
흉	160 200	315 395	347 435	218 274	240 301	304 381	3770 4116		400 550		62(135) 125(275)	62(135) 125(275)	FC-302N132T5 FC-302N160T5		D3h D4h	D1h/D5h/D6h D2h/D7h/D8h		D13 D13
ξ	250	480	528	333	366	463	5137		630		125(275)	125(275)	FC-302N10013			D2h/D7h/D8h		D13
400 В номинальное напряжение (380-440 В)	315	588	647	407	448	567	6674		800		125(275)	125(275)	FC-302N250T5		D4h			<i>D</i> 13
нальное на (380-440 В)	315	600	660	416	457	590	6705	_	700	221(487)		263(580)	FC-302P250T5	E2		E1	F8/F9	E9
0H 44	355	658	724	456	501	647	7532	0-290		234(516)		270(595)	FC-302P315T5	E2		E1	F8/F9	E9
аль	400 450	745 800	820 880	516 554	568 610	733 787	8677 9473	9	900	236(520)		272(600) 313(690)	FC-302P355T5 FC-302P400T5	E2 E2		E1 E1	F8/F9 F8/F9	E9 E9
MAH (3)	500	880	968	610	671	857	10162			277(611)		1004(2214)	FC-302P450T5	EZ		F1/F3	F10/F11	F18
Ş Q	560	990	1089	686	754	964	11822		2000			1004(2214)	FC-302P500T5			F1/F3	F10/F11	F18
B +	630	1120	1232	776	854	1090	12512		2000			1004(2214)	FC-302P560T5			F1/F3	F10/F11	F18
400	710	1260	1386	873	960	1227	14674					1004(2214)	FC-302P630T5			F1/F3	F10/F11	F18
	800 1000	1460 1720	1606 1892	1012 1192	1113 1311	1422 1675	17293 19278		2500			1246(2748) 1246(2748)	FC-302P710T5			F2/F4 F2/F4	F12/F13 F12/F13	
	150 л.с.	190	209	151	166	183	2261		315		62(135)	62(135)	FC-302P800T5 FC-302N90KT5		D3h	D1h/D5h/D6h	F12/F13	
d)	200 л.с.	240	264	191	210	231	2724		350		62(135)	62(135)	FC-302N110T5		D3h	D1h/D5h/D6h		
Ĭ	250 л.с.	302	332	241	265	291	3628		400		62(135)	62(135)	FC-302N132T5			D1h/D5h/D6h		D13
¥e	300 л.с.	361	397	288	317	348	3569		550		125(275)	125(275)	FC-302N160T5		D4h	D2h/D7h/D8h		D13
ğ	350 л.с. 450 л.с.	443 535	487 588	353 426	388 569	427 516	4566 5714		630 800		125(275) 125(275)	125(275) 125(275)	FC-302N200T5 FC-302N250T5		D4h D4h	D2h/D7h/D8h D2h/D7h/D8h		D13
на В)	450 л.с. 450 л.с.	540	594	430	473	531	5930		700	221(487)	123(273)	263(580)	FC-302N23013	E2	D 4 H	E1	F8/F9	E9
нальное на (441-500 В)	500 л.с.	590	649	470	517	580	6724	8	700	234(516)		270(595)	FC-302P315T5	E2		E1	F8/F9	E9
1-5 11-5	600 л.с.	678	746	540	594	667	7819	0-290	900	236(520)		272(600)	FC-302P355T5	E2		E1	F8/F9	E9
460 В номинальное напряжение (441-500 В)	600 л.с.	730	803	582	640	718	8527			277(611)		313(690)	FC-302P400T5	E2		E1	F8/F9	E9
1WO	650 л.с. 750 л.с.	780 890	858 979	621 709	684 780	759 867	8876 10424					1004(2214) 1004(2214)	FC-302P450T5 FC-302P500T5			F1/F3 F1/F3	F10/F11 F10/F11	F18 F18
BH	730 л.с. 900 л.с.	1050	1155	837	920	1022	11595		2000			1004(2214)	FC-302P500T5			F1/F3	F10/F11	F18
90	1000 л.с.	1160	1276	924	1017	1129	13213					1004(2214)	FC-302P630T5			F1/F3	F10/F11	F18
4	1200 л.с.	1380	1518	1100	1209	1344	16229		2500			1246(2748)	FC-302P710T5			F2/F4	F12/F13	
	1350 л.с.	1530	1683	1219	1341	1490	16624				62(425)	1246(2748)	FC-302P800T5		Dal	F2/F4	F12/F13	
	132 160	190 240	209 264	165 208	182 229	183 231	2261 2724		315 350		62(135) 62(135)	62(135) 62(135)	FC-302N90KT5 FC-302N110T5			D1h/D5h/D6h D1h/D5h/D6h		
Тие	200	302	332	262	288	291	3628		400		62(135)	62(135)	FC-302N132T5			D1h/D5h/D6h		D13
ą Ą	250	361	397	313	344	348	3569		550		125(275)	125(275)	FC-302N160T5			D2h/D7h/D8h		D13
Кd	315	443	487	384	422	427	4566		630		125(275)	125(275)	FC-302N200T5			D2h/D7h/D8h		D13
нап 3)	355	535	588	463	509	516	5714		800	221/407	125(275)	125(275)	FC-302N250T5	F2	D4h	D2h/D7h/D8h	F0/F0	F0
0e H	355 400	540 590	594 649	468 511	514 562	531 580	5930 6724	0	700	221(487) 234(516)		263(580) 270(595)	FC-302P250T5 FC-302P315T5	E2 E2		E1 E1	F8/F9 F8/F9	E9 E9
15H	500	678	746	587	646	667	7819	0-590	900	236(520)		270(393)	FC-302P355T5	E2		E1	F8/F9	E9
500 В номинальное напряжение (441-500 В)	530	730	803	632	695	718	8527			277(611)		313(690)	FC-302P400T5	E2		E1	F8/F9	E9
Σ Z Z	560	780	858	675	743	759	8876					1004(2214)	FC-302P450T5			F1/F3	F10/F11	F18
9	630	890	979	771	848	867	10424		2000			1004(2214)	FC-302P500T5			F1/F3	F10/F11	F18
00 B	710 800	1050 1160	1155 1276	909	1000 1105	1022 1129	11595 13213					1004(2214) 1004(2214)	FC-302P560T5 FC-302P630T5			F1/F3 F1/F3	F10/F11	F18 F18
20	1000			1195	1315		16229					1246(2748)	FC-302P63015 FC-302P710T5			F1/F3 F2/F4	F10/F11	F10
	1100					1490			2500				FC-302P800T5				F12/F13	
	Свяжите	сьспро	изводи	телем	по воп	росу во	зможносп	าน นระเ	отовле	ния привод	ов больше	й мощности						

- По умолчанию приводы имеют высокую перегрузку. Нормальная перегрузка устанавливается через программное обеспечение.
- Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.

VLT® AutomationDrive (FC 302) 525-690 В — Высокая перегрузка

	V 1-1	,	J1110	4110								DDICON	ал перег				106711
						Высо	кая пере	егруз					Типкод	li.		змер в зависим тепени защит	
	Мощность		рыходнои ток	Выходная	мощность	Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, A		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse
	[кВт]	[/	\]	[ĸE	BA]	[A]	[Вт]	8	2								
		Длит., I _{'N}	Прерыв., І, (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 21/IP	54
	45	76	122	72	108	77	1098		160		62(135)	62(135)	FC-302N55KT7		D3h	D1h/D5h/D6h	
	55 75	90	135	86 108	129	89	1162		200		62(135)	62(135)	FC-302N75KT7		D3h	D1h/D5h/D6h	
ā	90	113 137	170 206	131	161 196	110 130	1430 1742	8			62(135) 62(135)	62(135) 62(135)	FC-302N90KT7 FC-302N110T7		D3h D3h	D1h/D5h/D6h D1h/D5h/D6h	
В номинальное напряжение (525-550 В)	110	162	243	154	231	158	2080	0-290	315		62(135)	62(135)	FC-302N132T7		D3h	D1h/D5h/D6h	
XX.	132	201	302	191	287	198	2361				125(275)	125(275)	FC-302N160T7		D4h	D2h/D7h/D8h	
d L	160	253	380	241	362	245	3012		550		125(275)	125(275)	FC-302N200T7		D4h	D2h/D7h/D8h	F8/F9
В)	200	303	455	289	433	299	3642		330		125(275)	125(275)	FC-302N250T7		D4h	D2h/D7h/D8h	F8/F9
нальное на (525-550 В)	250 300	360 395	540 593	343 376	516 564	355 381	4146 4424				125(275)	125(275)	FC-302N315T7 FC-302P355T7	E2	D4h	D2h/D7h/D8h E1	F8/F9 F8/F9
лы 25-	315	429	644	409	613	413	4795		700	221(487)		263(580)	FC-302P30317	E2		E1	F8/F9
ИНа (52	400	523	785	498	747	504	6483		000	236(520)		272(600)	FC-302P500T7	E2		E1	F8/F9
OMI	450	596	894	568	852	574	7383	0	900	277(611)		313(690)	FC-302P560T7	E2		E1	F8/F9
Вн	500	659	989	628	942	642	8075	0-200					FC-302P630T7			F1/F3	F10/F11
525	560	763	1145	727	1090	743	9165					1004(2214)	FC-302P710T7			F1/F3	F10/F11
7	670 750	889 988	1334 1482	847 941	1270 1412	866 962	10860 12062		2000				FC-302P800T7 FC-302P900T7			F1/F3 F2/F4	F10/F11 F12/F13
	850	1108	1662	1056	1583	1079	13269					1246(2748)	FC-302P1M0T7			F2/F4	F12/F13
	1000	1317	1976	1255	1380	1282	18536						FC-302P1M2T7			F2/F4	F12/F13
	60 л.с.	73	117	73	110	74	1098		160		62(135)	62(135)	FC-302N55KT7		D3h	D1h/D5h/D6h	
	75 л.с.	86	129	86	129	85	1162		200		62(135)	62(135)	FC-302N75KT7		D3h	D1h/D5h/D6h	
ā	100 л.с. 125 л.с.	108 131	162 197	108 130	161 196	106 124	1480 1800	_			62(135) 62(135)	62(135) 62(135)	FC-302N90KT7 FC-302N110T7		D3h D3h	D1h/D5h/D6h D1h/D5h/D6h	
ЭНИ	150 л.с.	155	233	154	232	151	2159	0-590	315		62(135)	62(135)	FC-302N132T7		D3h	D1h/D5h/D6h	
¥ K	200 л.с.	192	288	191	287	189	2446	Ó			125(275)	125(275)	FC-302N160T7		D4h	D2h/D7h/D8h	
дц	250 л.с.	242	363	241	362	234	3123		550		125(275)	125(275)	FC-302N200T7		D4h	D2h/D7h/D8h	
е на В)	300 л.с. 350 л.с.	290 344	435 516	289 343	433 516	286 339	3771 4258				125(275)	125(275) 125(275)	FC-302N250T7 FC-302N315T7		D4h D4h	D2h/D7h/D8h D2h/D7h/D8h	
нальное на (551-690 В)	330 л.с. 400 л.с.	380	570	378	568	366	4424				125(275)		FC-302N31317 FC-302P355T7	E2	D4H	E1	F8/F9
аль 51-	400 л.с.	410	615	408	612	395	4795		700	221 (487)		263 (580)	FC-302P400T7	E2		E1	F8/F9
В номинальное напряжение (551-690 В)	500 л.с.	500	750	498	747	482	6483		900	236(520)		272(600)	FC-302P500T7	E2		E1	F8/F9
ΨO	600 л.с.	570	855	568	852	549	7383		500	277(611)		313(690)	FC-302P560T7	E2		E1	F8/F9
	650 л.с. 750 л.с.	630 730	945 1095	627 727	941 1091	613 711	8075 9165	0-200				1004(2214)	FC-302P630T7 FC-302P710T7			F1/F3 F1/F3	F10/F11 F10/F11
575	750 л.с. 950 л.с.	850	1095	847	1270	828	10860	0				1004(2214)	FC-302P71017			F1/F3	F10/F11
	1050 л.с.	945	1418	941	1412	920	12062		2000				FC-302P900T7			F2/F4	F12/F13
	1150 л.с.	1060	1590	1056	1584	1032	13269					1246(2748)	FC-302P1M0T7			F2/F4	F12/F13
	1350 л.с.	1260	1890	1255	1381	1227	18536		160		(2/125)	(2/125)	FC-302P1M2T7		Dak	F2/F4	F12/F13
	55 75	73 86	110 129	87 103	131 155	77 87	1057 1205		160		62(135) 62(135)	62(135) 62(135)	FC-302N55KT7 FC-302N75KT7		D3h D3h	D1h/D5h/D6h D1h/D5h/D6h	
	90	108	162	129	194	109	1480		200		62(135)	62(135)	FC-302N/90KT7		D3h	D1h/D5h/D6h	
иe	110	131	197	157	235	128	1800	0	315		62(135)	62(135)	FC-302N110T7		D3h	D1h/D5h/D6h	
éн	132	155	233	185	278	155	2159	0-590	313		62(135)	62(135)	FC-302N132T7		D3h	D1h/D5h/D6h	
690 В номинальное напряжение (551-690 В)	160	192	288	299	344	197	2446				125(275)	125(275)	FC-302N160T7		D4h	D2h/D7h/D8h	
ап	200 250	242 290	363 435	289 347	434 520	240 296	3123 3771		550		125(275) 125(275)	125(275) 125(275)	FC-302N200T7 FC-302N250T7		D4h D4h	D2h/D7h/D8h D2h/D7h/D8h	
нальное на (551-690 В)	315	344	516	411	617	352	4258				125(275)	125(275)	FC-302N315T7		D4h	D2h/D7h/D8h	
рнq -69	355	380	570	454	681	366	4589		700	221(487)		263(580)	FC-302P355T7	E2		E1	F8/F9
нал 551	400	410	615	490	735	395	4970		700				FC-302P400T7	E2		E1	F8/F9
MAI.	500	500	750	598	896	482	6707		900	236(520)		272(600)	FC-302P500T7	E2		E1	F8/F9
НО	560 630	570 630	855 945	681 753	1022 1129	549 613	7633 8388	9		277(611)		313(690)	FC-302P560T7 FC-302P630T7	E2		E1 F1/F3	F8/F9 F10/F11
0 B	710	730	1095	872	1309	711	9537	0-500				1004(2214)	FC-302P63017 FC-302P710T7			F1/F3	F10/F11
69	800	850	1275	1016	1524	828	11291					(,== : 1)	FC-302P800T7			F1/F3	F10/F11
	900	945	1418	1129	1694	920	12524		2000				FC-302P900T7			F2/F4	F12/F13
	1000	1060	1590	1267	1900	1032	13801					1246(2748)	FC-302P1M0T7			F2/F4	F12/F13
	1200	1260				1227	16719	/220m	000000	a nnusodos 6	 Большей мои	шости	FC-302P1M2T7	L	<u> </u>	F2/F4	F12/F13

Свяжитесь с производителем по вопросу возможности изготовления приводов большей мощности

По умолчанию приводы имеют высокую перегрузку. Нормальная перегрузка устанавливается через программное обеспечение. Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.

^{***} Полный код описан на страницах 68-71.

^{****} Прерывистый режим приведен для тока 150% от номинального для высокой перегрузки.

VLT® AutomationDrive (FC 302) 525-690 В — Нормальная перегрузка

					ŀ	Нормал	пьная пе	ерегр	узка				Типкод	Tı		змер в зависим степени защит	
	Мощность		ББГХОДНОИ ТОК	Выходная	мощность	Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse
	[кВт]	[/	١]	[ĸE		[A]	[Вт]	B	>								
		Длит., I, _N	Прерыв., І, (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 21/IP	54
(525-550 B)	55 75 90 110 132 160 200 250 315 355 400 450 500 560 670 750 850 1000	90 113 137 162 201 253 303 360 418 470 523 596 630 763 889 988 1108 1317	99 124 151 178 221 278 333 396 460 517 757 656 693 839 978 1087 1219 1449	86 108 131 154 191 241 289 343 398 448 498 568 600 727 847 941 1056 1255	95 119 144 170 211 265 318 377 438 493 548 625 660 800 932 1035 1161 1380	89 110 130 158 198 245 299 355 408 453 504 607 743 866 962 1079 1282	1162 1428 1740 2101 2649 3074 3723 4465 5028 5323 6010 7395 8209 9500 10860 12316 13731 16190	0-500	200 250 315 550 700 900	221(487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600) 313(690) 1004(2214)	FC-302N55KT7 FC-302N75KT7 FC-302N90KT7 FC-302N110T7 FC-302N132T7 FC-302N160T7 FC-302N250T7 FC-302N250T7 FC-302P355T7 FC-302P400T7 FC-302P500T7 FC-302P500T7 FC-302P630T7 FC-302P630T7 FC-302P800T7 FC-302P800T7 FC-302P900T7 FC-302P900T7 FC-302P900T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h D4h	D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 F1/F3 F1/F3 F1/F3 F1/F4 F2/F4	F8/F9 F8/F9 F8/F9 F8/F9 F8/F9 F8/F9 F10/F1 F10/F1: F10/F1: F12/F1:
(551-690 B)	1100 75 л.с. 100 л.с. 125 л.с. 150 л.с. 250 л.с. 350 л.с. 450 л.с. 450 л.с. 650 л.с. 650 л.с. 950 л.с. 1050 л.с. 1350 л.с. 1350 л.с.	1479 86 108 131 155 192 242 290 344 400 450 500 570 630 730 850 945 1060 1260 1415	95 119 144 171 211 266 319 378 440 495 550 627 693 803 935 1040 1166 1386 1557	1409 86 108 130 154 191 241 289 343 398 448 498 568 627 727 847 941 1056 1255 1409	1550 95 119 144 170 210 265 318 377 438 493 548 624 690 800 931 1035 1161 1380 1550	1440 85 106 124 151 189 234 286 339 390 434 482 549 607 711 828 920 1032 1227 1378	18536 1162 1428 1740 2101 2649 3074 3723 4465 5155 5323 6010 7395 8209 9500 10860 12316 13731 16190 18536	0-500 0-590	200 250 315 550 700 900	221 (487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263 (580) 272(600) 313(690) 1004(2214)	FC-302P1M2T7 FC-302N55KT7 FC-302N75KT7 FC-302N90KT7 FC-302N110T7 FC-302N132T7 FC-302N160T7 FC-302N250T7 FC-302N250T7 FC-302N315T7 FC-302P355T7 FC-302P400T7 FC-302P500T7 FC-302P500T7 FC-302P500T7 FC-302P70T7 FC-302P710T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h D4h	F2/F4 D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 F1/F3 F1/F3 F1/F3 F2/F4 F2/F4	F8/F9 F8/F9 F8/F9 F8/F9 F8/F9 F10/F1 F10/F1 F12/F1; F12/F1;
(551-690 B)	75 90 110 132 160 200 250 315 400 450 500 560 630 710 800 900 1000 1200 1400	86 108 131 155 192 242 290 344 400 450 500 570 630 730 850 945 1060 1260 1415	95 119 144 171 211 266 319 378 440 495 550 627 693 803 935 1040 1166 1386 1557	103 129 157 185 229 289 347 411 478 538 598 681 753 872 1016 1129 1267 1506	113 142 172 204 252 318 381 452 526 592 657 749 828 960 1117 1242 1394 1656 1860	109 128 155 197 240 296 352 400 434 482 549 607 711 828 920 1032 1227 1378	1204 1477 1798 2167 2740 3175 3851 4616 5155 5529 6239 7653 8495 9863 11304 12798 14250 16821 19247	0-500 0-590	200 200 250 315 315 550 550 550 700 900	221(487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600) 313(690) 1004(2214)	FC-302N55KT7 FC-302N75KT7 FC-302N90KT7 FC-302N110T7 FC-302N132T7 FC-302N160T7 FC-302N200T7 FC-302N250T7 FC-302N315T7 FC-302P355T7 FC-302P400T7 FC-302P500T7 FC-302P500T7 FC-302P500T7 FC-302P630T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P900T7 FC-302P1M0T7 FC-302P1M0T7 FC-302P1M0T7	E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h	D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h	F8/F9 F8/F9 F8/F9 F8/F9 F10/F1 F10/F1 F12/F1 F12/F1 F12/F1

^{*} По умолчанию приводы имеют высокую перегрузку. Нормальная перегрузка устанавливается через программное обеспечение.
** Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.
*** Полный код описан на страницах 68-71.

^{****} Прерывистый режим приведен для тока 110% от номинального для нормальной перегрузки.

VLT® AQUA Drive

Растущие требования к чистой воде и энергосбережению быстро повышают давление на мировые ресурсы воды, водоотведение, возобновление и генерацию энергии.

VLT® AQUA Drive разработан чтобы расширить операции, защитить оборудование, снизить содержание химических примесей и потерь воды в процессе значительного снижения энергопотребления.

VLT® AQUA Drive — это последнее достижение в области водоснабжения, водоотведения и восстановления воды.

Диапазон мощностей

■ 380-480/500 B

Нормальная перегрузка:

400 B110-1000 κBτ, 212-1720 A 460 B150-1350 π.c., 190-1530 A

■ 525-690 B

Нормальная перегрузка:

575 В75-1550 л.с., 86-1415 А 690 В75-1400 кВт, 86-1415 А

Степень защиты

■ IP 00, IP 20, IP 21 и IP 54.

Опции

См. стр. 53

Экономия затрат и защита оборудования

Привод VLT AQUA Drive имеет специальные функции для использования в водоподготовке и водоотведении:

1 АвтонастройкаПИ-регуляторов

С автоматической настройкой ПИрегуляторов привод проверяет реакцию системы на коррекцию, вносимую им самим — и изменяет собственные параметры, так что точная и стабильная работа достигается довольно быстро. ПИ-коэффициенты усиления постоянно изменяются для достижения компенсации характеристики нагрузки.

Режим заполнения пустой трубы

Данный режим возможен в режиме работы с обратной связью по давлению. Он предупреждает гидроудары, разрывы водоводов или срыв головок пульверизаторов.

Новый режим заполнения пустой трубы подходит как для горизонтальных, так и для вертикальных систем. Режим полезен во всех применениях, где требуется предварительное заполнение трубо-

проводов, таких как ирригационные системы, системы водоподачи и др.

■ Конец насосной характеристики говорит о разрыве или утечке

Это свойство привода позволяет определить утечку воды или разрыв трубопровода. Привод при достижении конца характеристики запускает аварийный сигнал, отключает насос или выполняет другую запрограммированную функцию в то время, когда насос работает на максимальной скорости без создания требуемого давления — ситуация, которая может возникнуть в результате обрыва трубопровода или утечки.

4 Защита обратного клапана

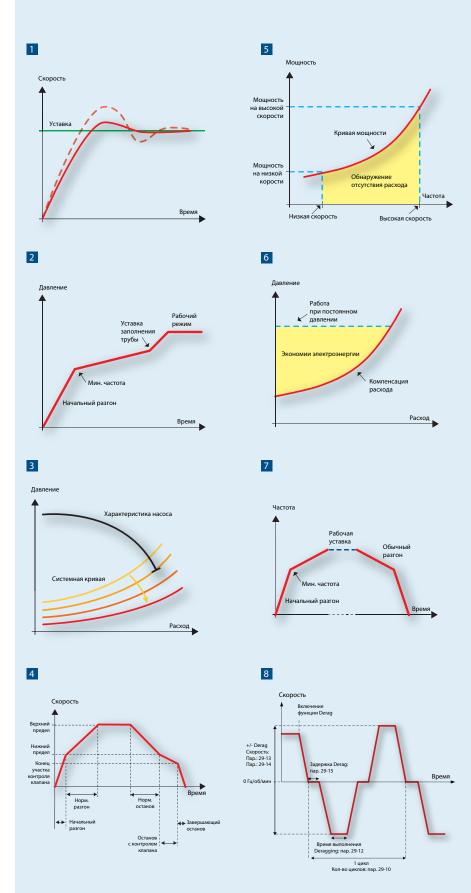
Останов с контролем обратного клапана предотвращает гидроудар при остановке насоса и закрытии обратного клапана. Останов с контролем обратного клапана плавно замедляет ход насоса на скорости близкой к запиранию клапана.

Б Обнаружение «сухого хода» снижает затраты на обслуживание

VLT® AQUA Drive постоянно оценивает условия работы насоса на основании внутреннего измерения частоты и мощности. В случае слишком малого потребления мощности — что имеет место при малом потоке либо полном его отсутствии — VLT® AQUA Drive остановится.

6 Компенсация расхода

Свойство компенсации расхода в VLT® AQUA Drive использует тот факт, что сопротивление потоку уменьшается с понижением расхода. Уставка давления соответственно понижается, чем достигается дополнительное энергосбережение.


7 Начальный/Конечный разгон

Начальный разгон обеспечивает быстрое ускорение насосов до минимальной скорости, где осуществляется переход к нормальному разгону. Это предотвращает повреждение осевых подшипников насоса. Конечный разгон служит для торможения насоса от минимальной скорости до останова.

В Функция Deragging

Эта новая функция позволяет осуществлять проактивную защиту насоса. Она может быть настроена как превентивная или реактивная функция. За счет постоянного мониторинга мощности двигателя на валу относительно расхода данная функция повышает эффективность работы насоса. В реактивном режиме привод отслеживает момент, когда насос начинает забиваться чем-нибудь, и меняет направление вращения, что позволяет гарантировать свободный проход воды через насос. В превентивном режиме привод будет периодически менять направление вращения, чтобы избежать засорения насоса.

Более полная информация в руководстве по проектированию, MG20.xx.yy, которое можно загрузить по следующей ссылке www.danfoss.com/products/literature/technical+documentation.htm

VLT® AQUA Drive (FC 202) 380-480 В — Нормальная перегрузка

	V	710	<u> </u>	ווט	, , ,		202)		<u> </u>	00 D	110	Pividite	лал пер	CI P	ysi	10		
					Н	Іормал	пьная пе	ерегр	узка				Типкод			оразмер в заві от степени заі		1
	Мощность		рыходнои ток	Выходная		Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse	VLT® Low Harmonic Drive
	[кВт]	[/	\]	[ĸE	BA]	[A]	[Вт]		2									
		Длит., I,	Прерыв., І _{мах} (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 2	1/IP 54	
	110	212	233	147	162	204	2555		315		62(135)	62(135)	FC-202N110T4		D3h	D1h/D5h/D6h		
a)	132	260	286	180	198	251	2949		350		62(135)	62(135)	FC-202N132T4		D3h			
400 В номинальное напряжение (380-440 В)	160	315	347	218	240	304	3764	İ	400		62(135)	62(135)	FC-202N160T4			D1h/D5h/D6h		D13
φ	200	395	435	274	301	381	4109	İ	550		125(275)	125(275)	FC-202N200T4		D4h	D2h/D7h/D8h		D13
Ŕ	250	480	528	333	366	463	5129	l	630		125(275)	125(275)	FC-202N250T4		D4h	D2h/D7h/D8h		D13
all all	315	588	647	407	448	567	6663	İ	800		125(275)	125(275)	FC-202N315T4		D4h	D2h/D7h/D8h		
нальное на (380-440 В)	315	600	660	416	457	590	6705		700	221(487)		263(580)	FC-202P315T4	E2		E1	F8/F9	E9
\$ 1 5	355	658	724	456	501	647	7532	0-290		234(516)		270(595)	FC-202P355T4	E2		E1	F8/F9	E9
46 6	400	745	820	516	568	733	8677	5	900	236(520)		272(600)	FC-202P400T4	E2		E1	F8/F9	E9
на. (38	450	800	880	554	610	787	9473			277(611)		313(690)	FC-202P450T4	E2		E1	F8/F9	E9
M	500	880	968	610	671	857	10162						FC-202P500T4			F1/F3	F10/F11	F18
오	560	990	1089	686	754	964	11822		2000			1004(2214)	FC-202P560T4			F1/F3	F10/F11	F18
B (630	1120	1232	776	854	1090	12512		2000			1004(2214)	FC-202P630T4			F1/F3	F10/F11	F18
9	710	1260	1386	873	960	1227	14674						FC-202P710T4			F1/F3	F10/F11	F18
7	800	1460	1606	1012	1113	1422	17293					1246(2748)	FC-202P800T4			F2/F4	F12/F13	
	1000	1720	1892	1192	1311	1675	19278		2500			, ,	FC-202P1M0T4			F2/F4	F12/F13	
	150 л.с.	190	209	151	167	185	2257		315		62(135)	62(135)	FC-202N110T4			D1h/D5h/D6h		
	200 л.с.	240	264	191	210	231	2719		350		62(135)	62(135)	FC-202N132T4			D1h/D5h/D6h		
Й	250 л.с.	302	332	241	265	291	3622		400		62(135)	62(135)	FC-202N160T4			D1h/D5h/D6h		D13
ĝ	300 л.с.	361	397	288	316	348	3561		550		125(275)	125(275)	FC-202N200T4					D13
춙	350 л.с.	443	487	353	388	427	4558		630		125(275)	125(275)	FC-202N250T4		D4h	D2h/D7h/D8h		D13
ᇤ	450 л.с.	535	588	426	469	516	5703		800	004(407)	125(275)	125(275)	FC-202N315T4		D4h		F0 (F0	
B (8	450 л.с.	540	594	430	473	531	6705		700	221(487)		263(580)	FC-202P315T4	E2		E1	F8/F9	E9
90 180	500 л.с.	590	649	470	517	580	6724	8		234(516)		270(595)	FC-202P355T4	E2		E1	F8/F9	E9
В номинальное напряжение (441-480 В)	550/ 600 л.с.	678	746	540	594	667	7819	0-290	900	236(520)		272(600)	FC-202P400T4	E2		E1	F8/F9	E9
Ā,	600 л.с.	730	803	582	640	718	8527			277(611)		313(690)	FC-202P450T4	E2		E1	F8/F9	E9
Q	650 л.с.	780	858	621	984	759	8876						FC-202P500T4			F1/F3	F10/F11	F18
В	750 л.с.	890	979	709	780	867	10424		2000			1004(2214)	FC-202P560T4			F1/F3	F10/F11	F18
460	900 л.с.	1050	1155	837	920	1022	11595						FC-202P630T4			F1/F3	F10/F11	F18
4	1000 л.с.	1160	1276	924	1017	1129	13213						FC-202P710T4			F1/F3	F10/F11	F18
	1100 л.с.		1518	1100	1209	1344	16229					1246(2748)	FC-202P800T4			F2/F4	F12/F13	
	1350 л.с.		1683		1341	1490	16624		2500	L	Эсе боли инс	, ,	FC-202P1M0T4			F2/F4	F12/F13	

Свяжитесь с производителем по вопросу возможности изготовления приводов большей мощности

- Не применимо для VLT Harmonic Drive.
 Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.
 Полный код описан на страницах 68-71.
 прерывистый режим приведен для тока 110% от номинального для нормальной перегрузки.

VLT® AQUA Drive (FC 202) 525-690 В — Нормальная перегрузка

					ŀ	Іорма.	льная пе	ерегр	узка				Типкод	Ti		змер в зависим степени защити	
	Мощность	200	рыходной ток	Выходная	мощность	Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***		UI.	VLT® 6-Pulse	VLT® 12-Pulse
	[кВт]	[<i>P</i>	١]	[ĸE	BA]	[A]	[Вт]	Bb	> ^								
		Длит., I,	Прерыв., І _{мах} (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 21/IP	54
525 В номинальное напряжение (525-550 В)	55 75 90 110 132 160 200 250 315 355 400 450 500 670 750 850 1000	90 113 137 162 201 253 303 360 418 470 523 596 630 763 889 988 1108 1317	99 124 151 178 221 278 333 396 460 517 575 656 693 839 978 1087 1219 1449	86 108 131 154 191 241 289 343 398 448 498 568 600 727 847 941 1056 1255	95 119 144 170 211 265 318 377 438 493 548 625 660 800 932 1035 1161 1380	89 110 130 158 198 245 299 355 408 453 504 574 607 743 866 962 1079 1282	1162 1428 1739 2099 2646 3071 3719 4460 5023 5323 6010 7395 8209 9500 10872 12316 13731 16190	0-500 00-500	200 200 250 315 350 400 500 550 700 900	221(487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600) 313(690) 1004(2214)	FC-202N75KT7 FC-202N90KT7 FC-202N110T7 FC-202N110T7 FC-202N160T7 FC-202N250T7 FC-202N250T7 FC-202N315T7 FC-202N400T7 FC-202P450T7 FC-202P500T7 FC-202P630T7 FC-202P630T7 FC-202P800T7 FC-202P800T7 FC-202P800T7 FC-202P900T7 FC-202P1M0T7 FC-202P1M0T7 FC-202P1M2T7	E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h D4h	D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 F1/F3 F1/F3 F1/F3 F2/F4 F2/F4	F8/F9 F8/F9 F8/F9 F10/F11 F10/F11 F10/F11 F12/F13 F12/F13
575 В номинальное напряжение (551-690 В)	1100 75 л.с. 100 л.с. 125 л.с. 150 л.с. 250 л.с. 250 л.с. 400 л.с. 450 л.с. 600 л.с. 650 л.с. 650 л.с. 150 л.с. 1150 л.с. 1150 л.с.	86 108 131 155 192 242 290 344 400 450 500 570 630 730 850 945 1060 1260	95 119 144 171 211 266 319 378 440 495 550 627 693 803 935 1040 1166 1386	1409 86 108 130 154 191 241 289 343 398 448 498 568 627 727 847 941 1056 1255	95 119 144 170 210 265 318 377 438 493 548 624 690 800 931 1035 1161 1380	1440 85 106 124 151 189 234 286 339 390 434 482 549 607 711 828 920 1032 1227	18536 1162 1428 1739 2099 2646 3071 3719 4460 5023 5323 6010 7395 8209 9500 10872 12316 13731 16190	0-500 00-500	200 200 250 315 350 400 500 550 550 700 900	221 (487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263 (580) 272(600) 313(690) 1004(2214)	FC-202P1M4T7 FC-202N75KT7 FC-202N90KT7 FC-202N110T7 FC-202N110T7 FC-202N160T7 FC-202N250T7 FC-202N250T7 FC-202N315T7 FC-202N400T7 FC-202P450T7 FC-202P500T7 FC-202P500T7 FC-202P710T7 FC-202P800T7 FC-202P800T7 FC-202P900T7 FC-202P900T7 FC-202P91M0T7 FC-202P1M2T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h	F2/F4 D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 E1 F1/F3 F1/F3 F1/F3 F2/F4 F2/F4	F8/F9 F8/F9 F8/F9 F10/F11 F10/F11 F10/F13 F12/F13
690 В номинальное напряжение (551-690 В)	75 90 110 132 160 200 250 315 400 450 560 630 710 800 900 1000 1200 1400	1415 86 108 131 155 192 242 290 344 400 450 500 570 630 730 850 945 1060 1260 1415	95 119 144 171 211 266 319 378 440 495 550 627 693 803 935 1040 1166 1386 1557	1409 103 129 157 185 229 289 347 411 478 538 598 681 753 872 1016 1129 1267 1506 1691	1550 113 142 172 204 252 318 381 452 526 592 657 749 828 960 1117 1242 1394 1656 1860	1378 87 109 128 155 197 240 296 352 400 434 482 549 607 711 828 920 1032 1227 1378	18536 1204 1477 1796 2165 2738 3172 3848 4610 5150 5529 6239 7653 8495 9863 11304 12798 14250 16821 19247	0-500 0-590	200 200 250 315 350 350 400 550 550 700 900	221(487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600) 313(690) 1004(2214)	FC-202P1M4T7 FC-202N75KT7 FC-202N90KT7 FC-202N110T7 FC-202N132T7 FC-202N160T7 FC-202N250T7 FC-202N315T7 FC-202N315T7 FC-202N400T7 FC-202P450T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P500T7 FC-202P10T7 FC-202P10T7 FC-202P1M4T7 FC-202P1M4T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h	F2/F4 D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 F1/F3 F1/F3 F1/F3 F2/F4 F2/F4	F8/F9 F8/F9 F8/F9 F8/F9 F10/F11 F10/F11 F12/F13 F12/F13 F12/F13

китесь с производителем по вопросу возможности изготовления приводов большей мощности

Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.

^{**} Полько оны праводов чы от насе и г. 1

VLT® HVAC Drive

«Данфосс» был первым производителем преобразователей частоты со специализацией на HVAC применениях. Наша группа HVAC посвящает все свое время разработке преобразователей частоты, позволяющих больше экономить энергии и таким образом уменьшать выбросы CO2.

Преобразователи VLT удовлятворяют постоянно растущим требованиям отрасли HVAC в обеспечении комфорта, автоматизации и экономии энергии. Большой опыт «Данфосс» в применении частотно-регулируемого привода в HVAC задачах позволил создать непровзойденное решение.

Диапазон мощностей

■380-480/500 B

Нормальная перегрузка:

400 В110-1000 кВт, 212-1720 А 460 В150-1350 л.с., 190-1530 А

■ 525-690 B

Нормальная перегрузка:

575 В75-1550 л.с., 86-1415 А 690 В75-1400 кВт, 86-1415 А

Степень защиты

■ IP 00, IP 20, IP 21 и IP 54.

Опции

См. стр. 53

Специализированные функции для управления насосами

Привод VLT® HVAC Drive имеет широчайший спектр функций управления насосами, разработанных в сотрудничестве с изготовителями комплексного оборудования, подрядчиками и производителями всего мира.

- Встроенный каскадный контроллер насоса
- Защита насоса от сухого хода и работы на краю рабочей характеристики
- Автонастройка ПИ-регуляторов
- Компенсация расхода
- Отсутствие расхода и низкий расход
- Режим «Сон»

Специализированные функции для управления вентиляторами

Ориентированные на пользователя, распределенная логика и сокращение энергопотребления приносят ощутимую выгоду для областей применения, связанных с эксплуатацией вентиляторов.

Базовые функции управления установками для кондиционирования воздуха

- Режимы «рабочие и выходные дни»
- Каскадное П-ПИ-управление для регулирования температуры

- Мультизонное регулирование
- Балансировка расхода между приточным и вытяжным каналами
- Мониторинг состояния ремней
- Пожарный режим
- Расширение возможностей системы управления зданием
- Мониторинг резонанса
- Поддержание подпора воздуха на лестничных клетках
- Снижение расходов на установки для кондиционирования воздуха

Специализированные функции для управления компрессорами

Привод VLT® HVAC Drive был разработан для обеспечения гибкого, интеллектуального управления компрессорами, значительно облегчая это управление с целью оптимизации производительности холодильной установки при постоянной температуре и постоянных уровнях давления для водяных охладителей и других типовых областей применения компрессоров в системах отопления, вентиляции и кондиционирования воздуха.

- Замена каскада на один компрессор
- Установка температуры
- Быстрый пуск без нагрузки

Улучшение эксплуатационных характеристик зданий

В настоящее время основное внимание уделяется общим эксплуатационным характеристикам зданий, включая дизайн, конструкцию, кпд, долговечность и влияние зданий на окружающую среду в будущем.

Энергосберегающие продукты являются частью этого всеобщего плана. В большинстве стран во всем мире данный план реализуется в виде оценки зданий как обладающих высокими эксплуатационными характеристиками по системе сертификации с точки зрения экологии и энергоэффективности (LEED).

Пожарный режим

Пожарный режим предотвращает останов привода VLT HVAC Drive в целях самозащиты. В этом режиме привод продолжает приводить в действие критически важные вентиляторы независимо от получения управляющих сигналов, предупреждений и аварийных сообщений.

Четкая индикация

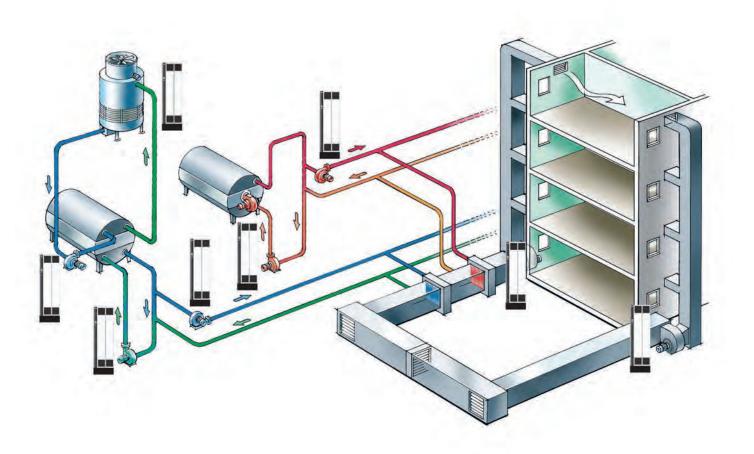
Во избежание недоразумений активация пожарного режима четко указывается на дисплее привода VLT. При активации данного режима средства самозащиты привода блокируются, и привод продолжает работу несмотря на возможность получения неустранимых повреждений вследствие перегрева или перегрузки.

Основная цель заключается в том, чтобы обеспечить продолжение работы электродвигателя, даже если это приведет к саморазрушению.

Поддержание подпора воздуха на лестничных клетках

В случае пожара привод VLT HVAC Drive может обеспечивать поддержание более высокого давления воздуха на лестничных клетках по сравнению с другими частями здания, чтобы на пожарных лестницах не было дыма.

Обход привода


При наличии обводной сети электропитания привод VLT HVAC Drive не только

«пожертвует собой» в экстремальных условиях, но может также зашунтировать себя и обеспечить непосредственное подключение двигателя к сети питания. В этом случае работа технологической установки будет продолжаться все время, пока подается питание, и работает двигатель.

Мониторинг резонанса

Нажав несколько кнопок на панели местного управления, можно настроить привод для пропуска диапазонов частот, на которых подключенные вентиляторы создают резонансные колебания в системе вентиляции. Это обеспечивает уменьшение вибрационного шума и износа оборудования.

Более полная информация в руководстве по проектированию, MG16.xx.yy, которое можно загрузить по следующей ссылке www.danfoss.com/products/literature/technical+documentation.htm

VLT® HVAC Drive (FC 102) 380-480 В — Нормальная перегрузка

	VLI	1 I V	70	יווע	<i>(</i>		02)	301	J-40	JU D -	- 110	JIVIAJID	ная пер	ei þ				
					Н	Іормал	пьная пе	ерегр	узка				Типкод			оразмер в заві от степени заі		1
	Мощность		рыходнои гок	Выходная	мощность	Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse	VLT® Low Harmonic Drive
	[кВт]	[/	\]	[ĸB	BA]	[A]	[Вт]		2									
		Длит., І,	Прерыв., І,мах (60 с)	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 2	1/IP 54	
	110	212	233	147	162	208	2555	Г	315		62(135)	62(135)	FC-102N110T4		D3h	D1h/D5h/D6h		
(I)	132	260	286	180	198	251	2949	İ	350		62(135)	62(135)	FC-102N132T4			D1h/D5h/D6h		
400 В номинальное напряжение (380-440 В)	160	315	347	218	240	304	3764	İ	400		62(135)	62(135)	FC-102N160T4			D1h/D5h/D6h		D13
Ę.	200	395	435	274	301	381	4109	ĺ	550		125(275)	125(275)	FC-102N200T4		D4h	D2h/D7h/D8h		D13
(KC	250	480	528	333	366	463	5129		630		125(275)	125(275)	FC-102N250T4		D4h	D2h/D7h/D8h		D13
all a	315	588	647	407	448	567	6663	ĺ	800		125(275)	125(275)	FC-202N315T4		D4h	D2h/D7h/D8h		
нальное на (380-440 В)	315	600	660	416	457	590	6705		700	221(487)		263(580)	FC-102P315T4	E2		E1	F8/F9	E9
14 14 14 14	355	658	724	456	501	647	7532	0-290		234(516)		270(595)	FC-102P355T4	E2		E1	F8/F9	E9
14 O	400	745	820	516	568	733	8677	5	900	236(520)		272(600)	FC-102P400T4	E2		E1	F8/F9	E9
на. (38	450	800	880	554	610	787	9473			277(611)		313(690)	FC-102P450T4	E2		E1	F8/F9	E9
Σ	500	880	968	610	671	857	10162						FC-102P500T4			F1/F3	F10/F11	F18
운	560	990	1089	686	754	964	11822	•	2000			1004(2214)	FC-102P560T4			F1/F3	F10/F11	F18
B (630	1120	1232	776	854	1090	12512		2000			1004(2214)	FC-102P630T4			F1/F3	F10/F11	F18
9	710	1260	1386	873	960	1227	14674	•					FC-102P710T4			F1/F3	F10/F11	F18
'	800	1460	1606	1012	1113	1422	17293					1246(2748)	FC-102P800T4			F2/F4	F12/F13	
	1000	1720	1892	1192	1311	1675	19278		2500				FC-102P1M0T4			F2/F4	F12/F13	
	150 л.с.	190	209	151	167	185	2257		315		62(135)	62(135)	FC-102N110T4			D1h/D5h/D6h		
	200 л.с.	240	264	191	210	231	2719		350		62(135)	62(135)	FC-102N132T4		D3h			
В	250 л.с.	302	332	241	265	291	3622		400		62(135)	62(135)	FC-102N160T4			D1h/D5h/D6h		D13
ê	300 л.с.	361	397	288	316	348	3561		550		125(275)	125(275)	FC-102N200T4		D4h	D2h/D7h/D8h		D13
ᅕ	350 л.с.	443	487	353	388	427	4558		630		125(275)	125(275)	FC-102N250T4		D4h	D2h/D7h/D8h		D13
불	450 л.с.	535	588	426	469	516	5703		800	004(407)	125(275)	125(275)	FC-102N315T4		D4h		F0 (F0	
E 60	450 л.с.	540	594	430	473	531	6705		700	221(487)		263(580)	FC-102P315T4	E2		E1	F8/F9	E9
90 80	500 л.с.	590	649	470	517	580	6724	8		234(516)		270(595)	FC-102P355T4	E2		E1	F8/F9	E9
460 В номинальное напряжение (441-480 В)	550/ 600 л.с.	678	746	540	594	667	7819	0-290	900	236(520)		272(600)	FC-102P400T4	E2		E1	F8/F9	E9
Ž,	600 л.с.	730	803	582	640	718	8527			277(611)		313(690)	FC-102P450T4	E2		E1	F8/F9	E9
ορ	650 л.с.	780	858	621	684	759	8876						FC-102P500T4			F1/F3	F10/F11	F18
В	750 л.с.	890	979	709	780	867	10424		2000			1004(2214)	FC-102P560T4			F1/F3	F10/F11	F18
09	900 л.с.	1050	1155	837	920	1022	11595		2000			1001(2217)	FC-102P630T4			F1/F3	F10/F11	F18
4	1000 л.с.	1160	1276	924	1017	1129	13213						FC-102P710T4			F1/F3	F10/F11	F18
	1200 л.с.	1380	1518	1100	1209	1344	16229					1246(2748)	FC-102P800T4			F2/F4	F12/F13	
	1350 л.с.	1530	1683	1219	1341	1490	16624	<u> </u>	2500			10(2, 10)	FC-102P1M0T4			F2/F4	F12/F13	

Свяжитесь с производителем по вопросу возможности изготовления приводов большей мощности

Не применимо для VLT Harmonic Drive.
 Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.
 Полный код описан на страницах 68-71.
 Прерывистый режим приведен для тока 110% от номинального для нормальной перегрузки.

VLT® HVAC Drive (FC 102) 525-690 В — Нормальная перегрузка

					ŀ	Іормал	льная пе	ерегр	узка				Типкод	Τι		змер в зависим степени защиті	
	Мощность		рыходнои гок	Выходная	_	Номинальный входный ток	Тепл. потери при макс. нагрузке **	Выходная частота **	Макс. ток предо- хранителей, А		Масса в кг (фунтах) **		Начало типкода ***			VLT® 6-Pulse	VLT® 12-Pulse
	[кВт]	[A	\]	[ĸE		[A]	[Вт]	8	2								
		Длит., I, _N	Прерыв., І,мах (60 с) ***	Длит.	Прерыв., (60 с)			Гц		IP 00	IP 20	IP 21/IP 54		IP 00	IP 20	IP 21/IP	54
525 В номинальное напряжение (525-550 В)	55 75 90 110 132 160 200 250 315 355 400 450 500 560 670 750 850	90 113 137 162 201 253 303 360 418 470 523 596 630 763 889 988 1108	99 124 151 178 221 278 333 396 460 517 575 656 693 839 978 1087 1219	86 108 131 154 191 241 289 343 398 448 498 568 600 727 847 941 1056	95 119 144 170 211 265 318 377 438 493 548 625 660 800 932 1035 1161	89 110 130 158 198 245 299 355 408 453 504 574 607 743 866 962 1079	1162 1428 1739 2099 2646 3071 3719 4460 5023 5323 6010 7395 8209 9500 10872 12316 13731	0-500 0-590	200 200 250 315 350 400 500 550 700 900	221(487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600) 313(690) 1004(2214)	FC-102N75KT7 FC-102N90KT7 FC-102N110T7 FC-102N132T7 FC-102N160T7 FC-102N250T7 FC-102N315T7 FC-102N400T7 FC-102P450T7 FC-102P500T7 FC-102P500T7 FC-102P630T7 FC-102P710T7 FC-102P800T7 FC-102P900T7 FC-102P900T7 FC-102P900T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h	D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1 E1 E1 F1/F3 F1/F3 F2/F4	F8/F9 F8/F9 F8/F9 F8/F9 F10/F11 F10/F11 F12/F13
В номинальное напряжение (551-690 В)	1000 1100 75 л.с. 100 л.с. 125 л.с. 150 л.с. 250 л.с. 350 л.с. 400 л.с. 450 л.с. 650 л.с.	1317 1479 86 108 131 155 192 242 290 344 400 450 500 570 630	1449 1627 95 119 144 171 211 266 319 378 440 495 550 627 693	1255 1409 86 108 130 154 191 241 289 343 398 448 498 568 627	1380 1550 95 119 144 170 210 265 318 377 438 493 548 624 690	1282 1440 85 106 124 151 189 234 286 339 390 434 482 549 607	16190 18536 1162 1428 1739 2099 2646 3071 3719 4460 5023 5323 6010 7395 8209	0-590	200 200 250 315 350 350 400 500 550 700	221 (487) 236(520) 277(611)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263 (580) 272(600) 313(690)	FC-102P1M2T7 FC-102P1M4T7 FC-102N75KT7 FC-102N90KT7 FC-102N110T7 FC-102N132T7 FC-102N200T7 FC-102N250T7 FC-102N315T7 FC-102N400T7 FC-102P450T7 FC-102P500T7 FC-102P500T7 FC-102P560T7 FC-102P630T7	E2 E2 E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h D4h	F2/F4 F2/F4 D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1	F12/F13 F12/F13 F12/F13 F8/F9 F8/F9 F8/F9 F8/F9
575 В нс	750 л.с. 950 л.с. 1050 л.с. 1150 л.с. 1350 л.с. 1550 л.с.	730 850 945 1060 1260 1415	803 935 1040 1166 1386 1557	727 847 941 1056 1255 1409	800 931 1035 1161 1380 1550	711 828 920 1032 1227 1378	9500 10872 12316 13731 16190 18536	0-200	2000			1004(2214)	FC-102P710T7 FC-102P800T7 FC-102P900T7 FC-102P1M0T7 FC-102P1M2T7 FC-102P1M4T7			F1/F3 F1/F3 F1/F3 F2/F4 F2/F4 F2/F4	F10/F11 F10/F11 F10/F11 F12/F13 F12/F13 F12/F13
690 В номинальное напряжение (551-690 В)	75 90 110 132 160 200 250 315 400 450 500 560	86 108 131 155 192 242 290 344 400 450 500 570	95 119 144 171 211 266 319 378 440 495 550 627	103 129 157 185 229 289 347 411 478 538 598 681	113 142 172 204 252 318 381 452 526 592 657 749	87 109 128 155 197 240 296 352 400 434 482 549	1204 1477 1796 2165 2738 3172 3848 4610 5150 5529 6239 7653	0-590	200 200 250 315 350 350 400 500 550 700	221(487) 236(520)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275)	62(135) 62(135) 62(135) 62(135) 62(135) 125(275) 125(275) 125(275) 125(275) 263(580) 272(600)	FC-102N75KT7 FC-102N90KT7 FC-102N110T7 FC-102N132T7 FC-102N160T7 FC-102N250T7 FC-102N250T7 FC-102N315T7 FC-102N400T7 FC-102P450T7 FC-102P500T7 FC-102P500T7	E2 E2 E2	D3h D3h D3h D3h D3h D4h D4h D4h	D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D1h/D5h/D6h D2h/D7h/D8h D2h/D7h/D8h D2h/D7h/D8h E1 E1	F8/F9 F8/F9 F8/F9
690 В ног	630 710 800 900 1000 1200 1400	630 730 850 945 1060 1260 1415	693 803 935 1040 1166 1386 1557	753 872 1016 1129 1267 1506 1691	828 960 1117 1242 1394 1656 1860	607 711 828 920 1032 1227 1378	8495 9863 11304 12798 14250 16821 19247	0-500	900	277(611)		313(690) 1004(2214) 1246(2748)	FC-102P630T7 FC-102P710T7 FC-102P800T7 FC-102P900T7 FC-102P1M0T7 FC-102P1M2T7 FC-102P1M4T7	E2		E1 F1/F3 F1/F3 F1/F3 F2/F4 F2/F4	F8/F9 F10/F11 F10/F11 F10/F11 F12/F13 F12/F13 F12/F13

^{*} Только для приводов VLT 6-Pulse и 12-Pulse. Размеры VLT Harmonic Drive необходимо смотреть отдельно.

^{**} Полный код описан на страницах 68-71.

^{****} Прерывистый режим приведен для тока 110% от номинального для нормальной перегрузки.

Преобразователи частоты большой мощности

Мощные преобразователи High Power Drives были спроектированы с целью расширить линейку предлагаемых приводов. Они собираются в США, и имеют такую же конструкцию и пользовательский интерфейс как и приводы меньшей мощности.

Преимущества

- Высокий КПД, более 98% позволяет снизить энергопотребление
- Уникальная технология охлаждения через тыльный канал, позволяет избежать применения доп. оборудования и снижает затраты на установку
- Более высокие чем требуемые стандартами рабочие температуры без снижения характеристик
- Стандартная панель оператора и простое программирование делают удобным ввод в эксплуатацию
- Модульная концепция позволяет легко обслуживать привод
- Встроенные дроссели позволяют обойтись без дополнительных внешних фильтров гармоник
- Встраиваемые фильтры высокочастотных помех доступны для всех мощностей

Степень защиты

- IP 00/Шасси
- IP 20/Protected Chassis
- IP 21/NEMA Type 1
- IP 54/NEMA Type 12

Диапазон напряжений

■ 380-690 B

Диапазон мощностней

380-480/500

Нормальная перегрузка: 400 В110-1000 кВт 460 В150-1350 л.с.

Высокая перегрузка:

400 В90-800 кВт 460 В125-1200 л.с. 525-690 B

Нормальная перегрузка:

575 В125-1550 л.с. 690 В90-1200 кВт

Высокая перегрузка:

575 В100-1350 л.с. 690 В75-1000 кВт

Характеристики

Частота сети	50/60 Гц (48-62 Гц ± 1%)
Максимальная длина кабеля	150 м экранированного, 300 метров неэкранированного
Температура окружающей среды при стандартных настройках	от -10 до 45 °C без снижения характеристик максимум 55 °C с уменьшением номинального тока (см. кривые снижения характеристик на стр.38)
Коэффициент мощности	Больше 0,9 при полной нагрузке
Напряжение сети	3 фазы, 380-500 B ± 10% (3 фазы x 380/400/415/440/460/480/500) или 525-690 B ±10% (3 фазы x 525/550/575/600/690)
Выходное напряжение	0-100% линейного напряжения
Номинальное напряжение двигателя	3 фазы x 380/400/415/440/460/500 или 3 фазы x 525/575/690
Номинальная частота двигателя	50/60 Гц
Термическая защита	ETR (класс 20)
THDi наихудший вариант при полной нагрузке	< 48%
THDi нормальное значение при полной нагрузке	< 35%
Охлаждение	Через тыльный канал

Нормы и рекомендации	Соответствие
IEC61000-3-2 (менее 16 A)	не применимо
IEC61000-3-12 (от 16 до 75 A)	не применимо
IEC61000-3-4 (более 75A)	всегда

Новый типоразмер D

Более производительные приводы в диапазоне от 55 до 315 кВт.

На сегодняшний день покупатели запрашивают более эффективные приводы. Подобные инвестиции в сберегающее оборудование быстро окупаются особенно на больших мощностях. Сейчас один из самых эффективных приводов на рынке стал еще более оптимизированным.

Размер нового типоразмера D стал меньше на 68%, что позволяет занимать ему меньше места щитовых. Новая версия IP20 оптимизирована для использования в шкафах управления, при этом обеспечивая высокую безопасность операторов. В новом типоразмере также используется концепция охлаждения через тыльный канал.

Компактная и эффективная конструкция является результатом работы над оптимизацией теплоотвода. Новый типоразмер нуждается в меньшем месте для монтажа, снижая таким образом затраты на монтаж. Новый D-frame доступен в тех же мощностях как и его предшественник.

- FC 302 Automation Drive для общих задач автоматизации
- FC202 AQUA Drive для применений в водоподготовке и водоотведении и других насосных применений
- FC102 HVAC Drive для применения в HVAC задачах

Характеристика

(новая опция)

Имеющие степень защиты корпуса IP20, IP21 и IP54, новые приводы имеют такой же пользовательский интерфейс как и все преобразователи VLT.

уменьшает необходимое отопление помещения.

ларактеристика	ры ода
Уменьшенные размеры	Размер уменьшен на 68%. Компактность нового типоразмера позволят сэкономить место и деньги.
Более высокая эффективность	Более высокая эффективность уменьшает эксплуатационные затраты.
Основные входные опции: – предохранители – сетевой разъединитель – контактор – автоматический выключатель – сетевой разъединитель + контактор	Позволяют избежать необходимости в шкафе управления, в случае когда достаточно базовых входных опций.
Стандартная платформа VLT и пользовательский интерфейс	Нет необходимости изучать новые команды, в связи с этим переход на новый типоразмер осуществляется очень просто.
Исполнение IP20 для установки в шкаф	Степень защиты IP20 увеличивает надежность работы
Опциональная панель доступа к радиатору	Позволяет чистить радиатор в случае эксплуатации в тяжелых условиях.
Охлаждение через тыльный канал выводит до 90% воздуха из помещения.	Уменьшается необходимость в кондиционировании помещения, сокращая таким образом эксплуатац. затраты.
Нагреватель против конденсата 230 В	Предотвращение возникновения конденсата

Решения по подавлению гармонических искажений

Практически все современное электронное оборудование выдает в сеть гармонические искажения. Идеальный источник питания это чистая синусоидальная волна основной частоты. Все электрооборудование спроектировано на работу с идеальными источниками питания. В случае наличия гармоник оборудование может отклоняться от своих номинальных характеристик, выходить из строя, уменьшать свой сро службы, что приводит к ощутимым затратам.

Выбор наилучшего решения зависит от ряда факторов:

- Сеть (другие искажения, нестабильность питания, резонанс и тип источника — трансформатор или генератор)
- Применение (профиль нагрузки, количество нагрузок и их тип)
- Локальные, национальные требования (IEEE519, IEC, G5/4 и др.)
- Общая стоимость владения (начальные затраты, эффективность, обслуживание и т.п.)

Пассивные решения

VLT® 12-pulse drives VLT® AHF фильтры Пассивные решения предлагают низкий уровень подавления гармоник по сравнению с активными. При этом подавление гармоник происходит более эффективно исходя из требований применений.

- Надежный корпус
- Фильтры могут использоваться для модернизации
- Высокая энергоэффективность
- Высокая надежность

Активные решения

VLT® Advanced Active Filter (AAF) VLT® Low Harmonic Drives

Активные фильтры VLT Active Filters измеряют гармонические искажения от нелинейных нагрузок и отпределяют наиболее оптимальную их компенсацию.

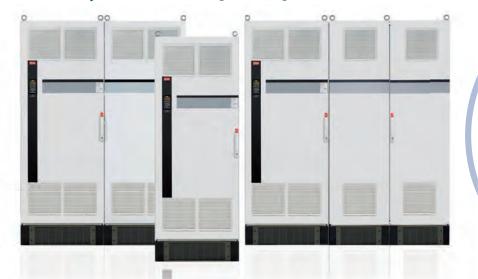
Активный фильтр создаёт путь низкого импеданса в фильтре и гармоники идут в фильтр вместо того, чтобы идти в направлении источника питания. Фильтры VLT имеют такие же характеристики как и мощные преобразователи частоты, включая высокий КПД, пользовательский интерфейс, систему охлаждения. Активные фильтры могут

устанавливаться совместно с приводами «Данфосс» как интегированное решение и компенсировать их искажения или устанавливаться отдельно, компенсируя несколько нагрузок сразу.

- Высокий уровень подавления гармоник
- Не зависит от нагрузки и нестабильности сети
- Наилучшая стоимость владения
- Можно использовать при модернизации
- Возможность установки РСС (групповая компенсация, коррекция коэффициента мощности и баланс нагрузки)
- Компактные и легкие

Более подробная информация об активных решения Danfoss в руководствах: VLT® Low Harmonic Drive (LHD) MG.34.OX.YY и VLT® Active Filters (AAF) MG.90.VX.YY.

Типовые применения, где необходима оценка воздействия гармоник


Соответствие стандартам по гармоническим искажениям

Сфера	Применение	Преимущества
Проекты в сфере экологии:	водоснабжение и очистка сточных водвентиляторы и компрессорыпроизводство продовольствия и напитков	 соответствует стандартам по гармоническим искажениям Уменьшает воздействие гармонических искажений на электрическую сеть
Критические производства/ чувствительная среда:	 коммунальные услуги нефтегазовая промышленность чистые комнаты аэропорты электростанции очистка сточных вод 	 соответствует стандартам по гармоническим искажениям уменьшает мерцание освещения обеспечивает длительный срок безотказной работы гашение резонансных колебаний

Области применения с большими гармоническими искажениями

Сфера	Применение	Преимущества		
Изолированные энергосистемы или установки с питанием от генераторов:	– прибрежные установки; – морской сектор – больницы	 обеспечивает качество напряжения на первичном и резервном источнике питания уменьшает мерцание освещения предотвращает отключения 		
Недостаточная мощность энергетической системы:	– быстрорастущие регионы – развивающиеся страны	– увеличение способности трансформатора выдерживать большие нагрузки – улучшает коэффициент мощности		
Неустойчивые энергосистемы (отдалённые районы):	– удалённые районы – горная промышленность – нефтегазовая промышленность	 уменьшает нагрузку на систему, улучшая коэффициент активной мощности предотвращает отключения и обеспечивает длительный срок безотказной работы 		

12-пульсные преобразователи частоты

Оптимизирован

- VLT® HVAC Drive FC 102
- VLT® AQUA Drive FC 202
- VLT® AutomationDrive FC 302

12-пульсный привод VLT® компании Danfoss обеспечивает ослабление гармоник в системах мощностью выше 250 кВт, используемых в отраслях с повышенными требованиями.

Подавление гармонических искажений уменьшает риск возникновения резонанса в системе и поломок оборудова-

Подавление гармоник происходит за счет подключения двух шестипульсных выпрямителей паралельно к сети через трансформатор, сдвигающий на 30 градусов.

При этом токи гармоник ограничиваются до значений 12-15% при полной нагрузке. 12-пульсные приводы Danfoss уменьшают гармонические искажения без добавления емкостных или индуктивных элементов, которые зачастую требуют дополнительных расчетов во избежании резонанса.

Преимущества

12-пульсных приводов

- Прочный и надежный при работе в любых условиях и сетях
- Низкие потери за счет наличия дросселей на звене постоянного тока
- Высокая степень защиты по входу
- Не нужны никакие внешние дополнительные средства управления
- Стандартная панель оператора и программирование облегчают ввод в эксплуатацию
- Система охлаждения через тыльный канал нагрузку на общую систему охлаждения и повышает КПД
- Модульная конструкция облегчает доступ к компонентам и обслуживание в целом
- Компактная конструкция с минимальным монтажным зазором уменьшает требуемое место для монтажа

Данные преобразователи идеально подходят для применений, где происходит переход от высокого напряжения к низкому или где требуется изоляции от сети

Степень защиты

- IP 21/NEMA Тип 1
- IP 54/NEMA Тип 12

Диапазон напряжений

- 380-500 B
- 525-690 B

Диапазон мощностей

■ 380-480/500 B

Нормальная перегрузка 400 В315-1000 кВт 460 В450-1350 л.с. Высокая перегрузка: 400 В250-800 кВт 460 В350-1200 л.с.

■ 525-690 B

Нормальная перегрузка 575 В450-1550 л.с. 690 В450-1400 кВт Высокая перегрузка: 575 В400-1350 л.с. 690 В355-1200 кВт

Характеристики

Суммарный коэффициент гармоник тока (THiD)* при: – нагрузке 40 % – нагрузке 70 % – нагрузке 100 %	20% 14% 12%
КПД* при: – нагрузке 40 % – нагрузке 70 % – нагрузке 100 %	95% 97% 98%
Коэффициент активной мощности* при: – нагрузке 40 % – нагрузке 70 % – нагрузке 100 %	91% 95% 97%
Ассиметрия напряжений на выходе трансформатора	менее 0,5%
Ассиметрия импеданса на выходе трансформатора	менее 0,5%
Температура окружающей среды	от -10 до 45 °C без снижения ном. характеристик. Максимум 55 °C с уменьшением номинального тока (см. графики на стр. 38)
Охлаждение	Воздушное охлаждение посредством тыльного канала
*По результатам измерений в электрической сети без	предварительных искажений, не имеющей асимметрии

Нормы и рекомендации	Соответствие
IEEE519	Зависит от условий в электрической сети и нагрузки
IEC61000-3-2 (до 16 A)	Вне диапазона
IEC61000-3-12 (от 16 до 75 A)	Вне диапазона
IEC61000-3-4 (выше 75 A)	Всегда

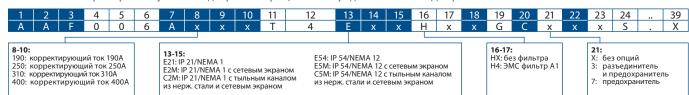
Активные фильтры VLT Advanced Active Filters

Характеристики

Номинальное напряжение

Типоразмер		D	E	E	Е
Тип		A190	A250	A310	A400
400 В — скорректированный ток					
Непр.	[A]	190	250	310	400
Прерыв.*	[A]	209	275	341	440
460 В — скорректированный ток					
Непр.	[A]	190	250	310	400
Прерыв.*	[A]	209	275	341	440
480 В — скорректированный ток					
Непр.	[A]	150	200	250	320
Прерыв.*	[A]	165	220	275	352
500 В — скорректированный ток					
Непр.	[A]	95	125	155	200
Прерыв.*	[A]	105	138	171	220
Максимальные тепловые потери	[кВт]	5	7	9	11.1
кпд	[%]	96	96	96	96
Рекомендуемый ток предохрани- телей и разъединителей	[A]	350	630	630	900
Данные кабеля:					
Максимальное сечение	[MM ²]	2 x 150	4 x 240	4 x 240	4 x 240
тиаксимальное сечение	[AWG]	2 x 300 mcm	4 x 500 mcm	4 x 500 mcm	4 x 500 mcm
Минимальное сечение	[MM ²]	70	120	240	2 x 95
типпитмальное сечение	[AWG]	2/0	4/0	2 x 3/0	2 x 3/0

^{* 1} минуту каждые 10 минут (автоматически регулируется)


^{**} Рекомендуются встроенные опции.

Тип фильтра 3P/3W, Активный непол фильтр (TN, TT, IT) Частота от 50 до 60 Гц, ± 5% Степень защиты IP 21 – NEMA 1, IP 54 – NI	EMA 12
Степень защиты IP 21 – NEMA 1, IP 54 – NI	
	ктеристик
Макс. предыскажения 10% напряжения 20% с ухудшением хара	
Температура эксплуатации 0-40 °С +5 °С с ухудшением хара -10 °С с ухудшением хара	
Высота 1000 м без снижения ха 3000 м со снижением хар	
Стандарты ЭМС IEC61000-6-2 IEC61000-6-4	
Покрытие плат Конформное покрытие рег ISA S71.04-1985, клас	
Языки 18	
Режимы компенсации гармоник Выборочный или полнь действующего значения уменьшения гармоник)	•
Спектр компенсации гармоник ОТ 2-й до 40-й в полном включая гармоники, кра 5-я, 7-я, 11-я, 13-я, 17-я, в выборочном режиме	атные трем.
Распределение тока гармоник в выборочном режиме 15: 63%, I7: 45%, I11: 29% 18%, I19: 16%, I23: 14%, I	
Компенсация реактивного тока Да, ведущая (емкостная фаз (индуктивная) для д коэффициента мощност	остижения

Снижение мерцания	да
Приоритет компенсации	Программируемый в соответствии с гармониками или коэффициентом реактивной мощности
Опция параллельной работы	До 4 единиц одинаковой мощности с устройством «мастер».
Поддержка датчиков тока	1 A и 5 A с автонастройкой Класса 1 или более высокого класса
Цифровые входы/выходы	4 (2 программируемые) PNP или NPN логика
Сетевой интефейс	RS485, USB1.1
Тип управления	Прямое управление гармониками (для более быстрой реакции)
Время отклика	< 15 мс (включая аппаратную задержку HW)
время установления сигнала гармоник (5-95%)	< 15 MC
Реактивное время установления сигнала (5-95%)	< 15 MC
Амплитуда перерегулирования	5%
Частота коммутации	пошаговое управление в диапазоне от 3 до 18 кГц
Средняя частота коммутации	3 – 4.5 кГц

Типовой код

Различные типы фильтров могут быть подобраны. Обращайтесь в представительство "Данфосс".

Приводы VLT Low Harmonic Drive

Привод VLT® Low Harmonic Drive компании Danfoss является первым решением, объединяющим в одном корпусе активный фильтр и привод.

Привод VLT® Low Harmonic Drive осуществляет непрерывное регулирование ослабления гармоник в соответствии с нагрузкой и условиями в электрической сети, не оказывая влияния на подключенный двигатель.

Суммарный коэффициент гармоник тока уменьшается до величины менее 3% в идеальных условиях и до величины менее 5 % в электрических сетях с сильными гармоническими искажениями и асимметрией фаз до 2 %.

Поскольку привод VLT® Low Harmonic Drive также обеспечивает соответствие отдельных гармоник самым строгим требованиям, данное устройство соответствует всем действующим стандартам и рекомендациям в отношении подавления гармоник.

Такие уникальные функции, как режим ожидания и охлаждение посредством тыльного канала, обеспечивают непревзойденный КПД приводов Low Harmonic Drive.

Порядок настройки и монтажа привода VLT® Low Harmonic Drive ничем не отличается от аналогичных процедур для любого стандартного привода VLT®, и данное устройство готово к обеспечению оптимальных характеристик гармоник сразу после поставки с завода.

Привод VLT® Low Harmonic Drive имеет такую же модульную конструкцию, что

и наши стандартные приводы высокой мощности, а также обладает аналогичными возможностями: встроенными фильтрами ВЧ-помех, покрытыми печатными платами и удобством программирования.

Степень защиты

- IP 21/NEMA 1
- IP 54/NEMA 12

Диапазон напряжений

■ 380 – 480 B AC 50 – 60 Гц

Оптимизирован

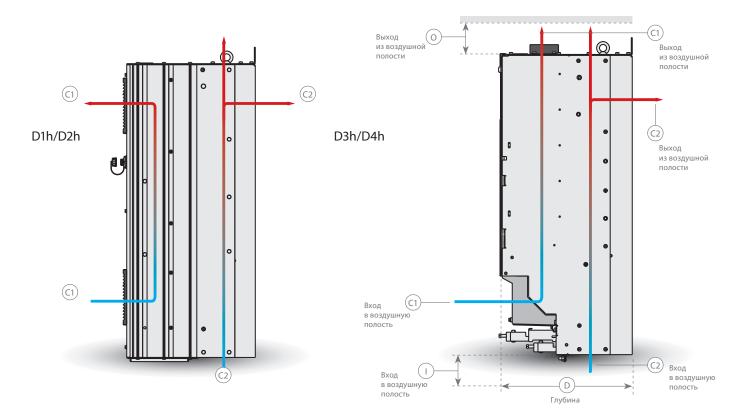
для

- VLT® HVAC Drive FC 102
- VLT® AQUA Drive FC 202
- VLT® AutomationDrive FC 302

Диапазон мощностей

- Высокая перегрузка: 132-630 кВт 200-900 л.с.
- Нормальная перегрузка: 160-710 кВт 250-1000 л.с.

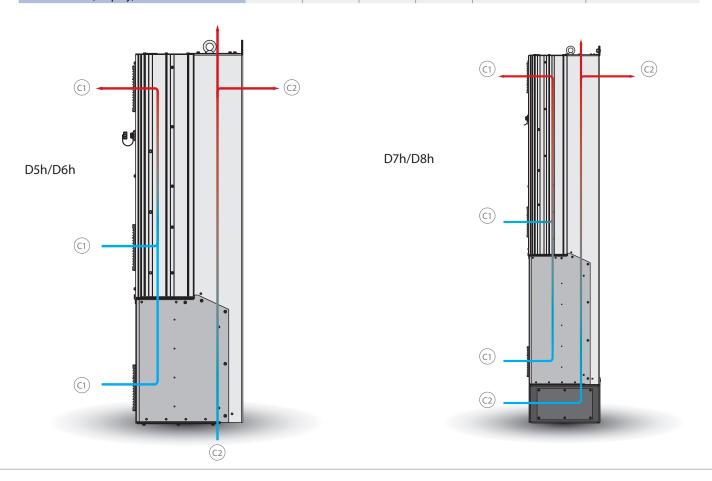
Технические характеристики


Суммарный коэффициент гармоник тока (THiD)* при: – 40% нагрузки – 70% нагрузки – 100% нагрузки	< 5.5% < 3.5% < 3%
КПД* при: – 40% нагрузки – 70% нагрузки – 100% нагрузки	> 93% > 95% > 96%
Коэффициент активной мощности* при: – 40% нагрузки – 70% нагрузки – 100% нагрузки	> 98% > 98% > 98%
Температура окружающей среды	40°С без снижения номинальных характеристик
Охлаждение	Воздушное охлаждение посредством тыльного канала

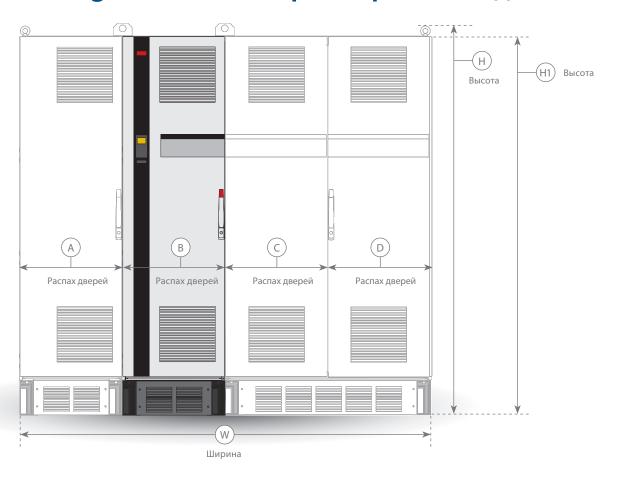
*По результатам измерений в электрической сети без предварительных искажений, не имеющей асимметрии

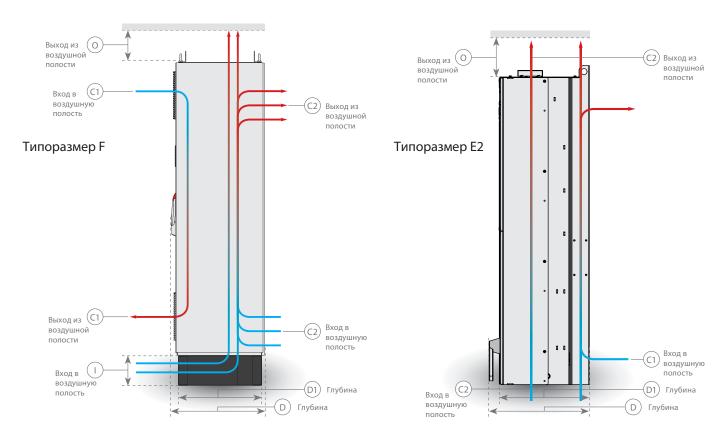
Нормы и рекомендации	Соответствие
IEEE519 for Isc/IL>20	Всегда
IEC61000-3-2 (до 16 A)	Вне диапазона
IEC61000-3-12 (от 16 до 75 A)	Вне диапазона
IEC61000-3-4 (выше 75 A)	Всегда

Размеры приводов VLT High Power в мм (дюймах)



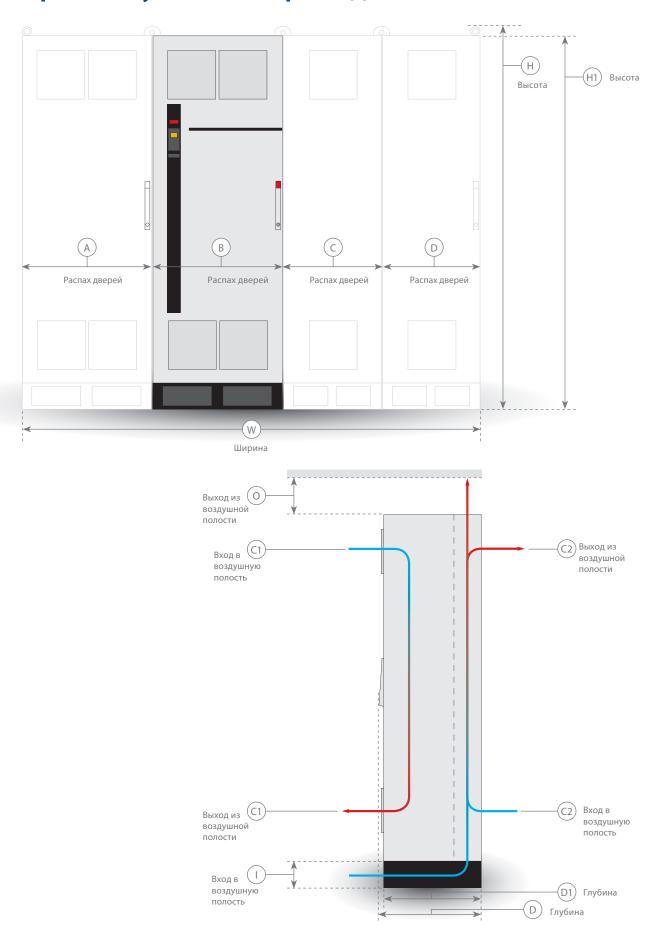
Для других типоразмеров используйте Руководство по проектированию, доступное на сайте www.danfoss.com/products/literature/technical+documentation.htm


Типоразмер D


		VLT® 6-VLT® 6-Pulse Drives							
	T		D2h	D3h	D4h	D5h	D6h	D7h	D8h
	Типоразмер	IP 21,	/IP 54	IP 20		IP 21/IP 54			
Н, м	ім (дюймы)	901 (36)	1107 (44)	909 (36)	1122 (44)	1324 (52)	1665 (66)	1978 (78)	2284 (90)
Н1,	мм (дюймы)	844 (33)	1050 (41)	844 (33)	1050 (41)	1277 (50)	1617 (64)	1931 (76)	2236 (88)
W, ı	лм (дюймы)	325 (13)	420 (17)	250 (10)	350 (14)	325 (13)			420 (17)
D, N	ім (дюймы)	378 (15)	378 (15)	375 (15)	375 (15)				402 (16)
Pac	пах дверей А, мм (дюймы)	298 (12)	395 (15.6)	n/a	n/a			395 (16)	
ние	I (вход в воздушную полость), мм (дюймы)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)
ажде	O (выход из воздушной полости), мм (дюймы)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)
Возд. охлаждение	C1	102 м³/ч (60 cfm)	204 м³/ч (120 cfm)	102 м³/ч (60 cfm)	204 м³/ч (120 cfm)	102 (60 c	•		м³/ч cfm)
Воз	C2	420 м³/ч (250 cfm)	840 м³/ч (500 cfm)	420 м³/ч (250 cfm)	840 м³/ч (500 cfm)	420 (250	м³/ч cfm)		м³/ч cfm)

кпд				0.	98	
Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (AWG)						
Макс. поперечное сечение кабеля к клеммам распределения нагрузки (на -=/+=)	×3/0)	85 mcm)	×3/0)	85 mcm)	× 3/0)	35 ncm)
Макс. поперечное сечение кабеля к клеммам рекуперации (на -=/+=)	95 (2	2×18 ×350 r	95 (2	2×18 ×350 r	95 (2	2 x 185 x 350 mc
Макс. сечение кабеля к клеммам резистора тормоза (на -R/+R)	2×	(5)	2×	(2)	, x	(2)
Макс. поперечное сечение кабеля к входным клеммам сети (на фазу)						

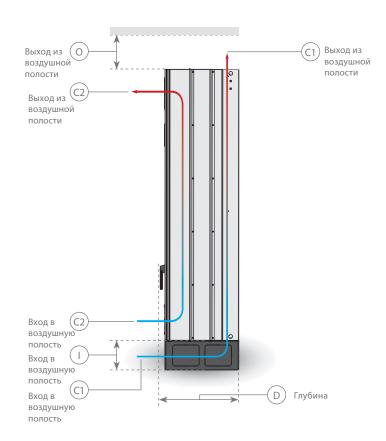
VLT® High Power Drive размеры в мм (дюймах)



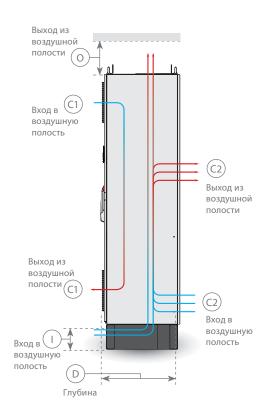
Для других типоразмеров используйте Руководство по проектированию, доступное на сайте www.danfoss.com/products/literature/technical+documentation.htm

Типоразмеры Е и F

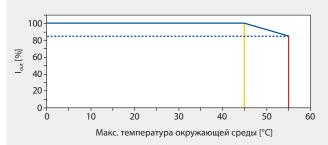
		E1	E2	F1	F3	F2	F4	
Типоразмер		IP 21/IP 54	IP 00		(F1 + шкафные опции)		(F2 + шкафные опции)	
Н, мм (дюймы)		2000 (79)	1547 (61)	2280 (90)	2280 (90)	2280 (90)	2280 (90)	
Н1, мм (дюймы)		n/a	n/a	2205 (87)	2205 (87)	2205 (87)	2205 (87)	
W, мм (дюймы)		600 (24)	585 (23)	1400 (55)	1997 (79)	1804 (71)	2401 (94)	
D, мм (дюймы)		538 (21)	539 (21)	n/a	n/a	n/a	n/a	
D1, мм (дюймы)		494 (19)	498 (20)	607 (24)	607 (24)	607 (24)	607 (24)	
Распах дверей А, мм (дюймы)		579 (23)	579 (23)	578 (23)	578 (23)	578 (23)	578 (23)	
Распах дверей В, мм (дюймы)		n/a	n/a	778 (31)	578 (23)	624 (25)	578 (23)	
Распах дверей С, мм (дюймы)		n/a	n/a	n/a	778 (31)	579 (23)	624 (25)	
Pac	пах дверей D, мм (дюймы)	n/a	n/a	n/a	n/a	n/a	578 (23)	
	I (вход в воздушную полость), мм (дюймы)	225 (9)	225 (9)	n/a	n/a	n/a	n/a	
Возд. охлаждение	O (выход из воздушной полости), мм (дюймы)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)	
	C1	1105 м³/ч (650 cfm) или 1444 м³/ч (850 cfm)	1105 м³/ч (650 cfm) или 1444 м³/ч (850 cfm)	985 м³/ч (580 cfm)				
	3	340 м³/ч (200 cfm)	255 м³/ч (150 cfm)	IP 21/NEMA 1 700 м³/ч (412 cfm)				
				IP 54/NEMA 12 525 m³/ч (309 cfm)				
КПД		0.98		0.98				
Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (AWG)				8 x 150 (8 x 300 mcm)	8 x 150 (8 x 300 mcm)	12 x 150 (12 x 300 mcm)	12 x 150 (12 x 300 mcm)	
	сс. поперечное сечение кабеля к клеммам пределения нагрузки (на -=/+=)	4 x 240 (4 x 500 mcm)		4 x 120 (4 x 250 mcm)				
Макс. поперечное сечение кабеля к клеммам рекуперации (на -=/+=)				2 x 150 (2 x 300 mcm)				
Макс. сечение кабеля к клеммам резистора тормоза (на -R/+R)		2 x 185 (2 x 350 mcm)		4 x 185 (4 x 350 mcm)	4 x 185 (4 x 350 mcm)	6 x 185 (6 x 350 mcm)	6 x 185 (6 x 350 mcm)	
Макс. поперечное сечение кабеля к входным клеммам сети (на фазу)		4 x 240 (4 x 500 mcm)		8 x 240 (8 x 500 mcm)				


Размеры 12-пульсного привода

F8 F9 F10 F11 F12 F13 F13 F13 F13 F13 F14 F13 F14 F15			12-пульсный привод							
H. MM (Дюймы) P. MM (Дюйм	Типоразмер		F8		F10	F11	F12			
H, MM (Дюймы)				шкафные		шкафные		шкафные		
М. мм (дюммы)	Н, мм (дюймы)									
Предправод по премененное сечение кабеля к клеммам резистора Предправод на клемам (дноймы) (32) (55) (55) (32) (95) (79) (110)	Н1, мм (дюймы)									
Д. ММ (Дюймы) (24) (24) (24) (24) (24) (24) (24) (24	W, мм (дюймы)									
Распах дверей А, ММ (Дюймы) Распах дверей В, мм (дюймы) Распах дверей С	D, мм (дюймы)									
Распах дверей С, мм (дюймы) Распах дверей С, мм (дюймы) Распах дверей О	Распах дверей А, мм (дюймы)									
Распах дверей С, мм (дюймы) п/а п/а п/а п/а п/а п/а п/а п/	Распах дверей В, мм (дюймы)		n/a					-		
Распах двереи D, мм (дюимы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (выход из воздушной полости), мм (дюймы) О (дея сти) (д	Распах дверей С, мм (дюймы)		n/a	n/a	n/a					
мм (дюймы) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	Распах дверей D, мм (дюймы)		n/a	n/a	n/a	n/a	n/a			
С2 1970 м³/ч (1160 CFM) 1970 м³/ч (1160 CFM) 2390 м³/ч (2320 CFM) 2990 CFM) 4925 м³/ч (2900 CFM)		1.0								
С2 1970 м³/ч (1160 CFM) 1970 м³/ч (1160 CFM) 2390 м³/ч (2320 CFM) 4925 м³/ч (2900 CFM)	зд. охлаждение	C1	1400 m ³ /ч (824 CFM) IP 54/NEMA 12 1050 m ³ /ч	2100 m ³ /ч (1236 CFM) IP 54/NEMA 12 1575 m ³ /ч	2800 m ³ /ч (1648 CFM) IP 54/NEMA 12 2100 m ³ /ч	4200 m ³ /ч (2472 CFM) IP 54/NEMA 12 3150 m ³ /ч	2800 m ³ /ч (1648 CFM) IP 54/NEMA 12 3150 m ³ /ч	4200 m ³ /ч (2472 CFM) IP 54/NEMA 12 3150 m ³ /ч		
№ кг (фунты) кг (фунты) 440 (880) 656 (1443) 880 (1936) 1096 (2411) 1022 (2248) 1238 (2724) КПД 0.98 Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (АWG) 8 x 150 (8 x 300 mcm) 8 x 150 (8 x 300 mcm) 12 x 150 (12 x 300 mcm) Макс. поперечное сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)	ă	C2	1970 м³/ч	1970 м³/ч	3940 м³/ч	3940 м³/ч	4925 м³/ч	4925 м³/ч		
№ кг (фунты) кг (фунты) 440 (880) 656 (1443) 880 (1936) 1096 (2411) 1022 (2248) 1238 (2724) КПД 0.98 Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (АWG) 8 x 150 (8 x 300 mcm) 8 x 150 (8 x 300 mcm) 12 x 150 (12 x 300 mcm) Макс. поперечное сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)		ID 24 / NIFAMA 4								
КПД 0.98 Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (АWG) 8 x 150 (8 x 300 mcm) 8 x 150 (8 x 300 mcm) 12 x 150 (12 x 300 mcm) Макс. поперечное сечение кабеля к клеммам рекуперации (на -=/+=) 4 x 120 (4 x 250 mcm) 4 x 185 (2 x 350 mcm) 4 x 185 (2 x 350 mcm) Макс. поперечное сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)	lacca	кг (фунты)	440 (880)	656 (1443)	880 (1936)	1096 (2411)	1022 (2248)	1238 (2724)		
Макс. сечение кабеля, подключаемого к выходным клеммам двигателя (на фазу), мм² (АWG) 8 x 150 (8 x 300 mcm) 8 x 150 (8 x 300 mcm) 12 x 150 (12 x 300 mcm) Макс. поперечное сечение кабеля к клеммам рекуперации (на -=/+=) 4 x 120 (4 x 250 mcm) Макс. сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)	~									
выходным клеммам двигателя (на фазу), мм² (АWG) 8 x 150 (8 x 300 mcm) 8 x 150 (8 x 300 mcm) 12 x 150 (12 x 300 mcm) Макс. поперечное сечение кабеля к клеммам рекуперации (на -=/+=) 4 x 120 (4 x 250 mcm) Макс. сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)			0.98							
рекуперации (на -=/+=) (4 x 250 mcm) Макс. сечение кабеля к клеммам резистора тормоза (на -R/+R) 2 x 185 (2 x 350 mcm) 4 x 185 (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)	выходным клеммам двигателя (на фазу),		- 11 10 0							
тормоза (на -R/+R) (2 x 350 mcm) (4 x 350 mcm) Макс. поперечное сечение кабеля к входным клеммам сети (на фазу) 8 x 250 (8 x 500 mcm)										
клеммам сети (на фазу) (8 x 500 mcm)										
Макс. ток предохранителей 630 630 900 900 2000										
	Мак	с. ток предохранителей	630	630	900	900	2000	2000		

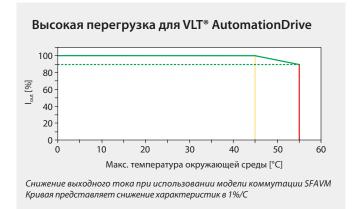

Активные фильтры ААГ размеры в мм (дюймах)

VLT® Low Harmonic Drive размеры в мм (дюймах)



			ный фильтр 006		VLT® Low Harmonic Drive	
Типоразмер		D14	E1	D13	E9	F18
Н, мм (дюймы)		1780 (70)	2000 (79)	1780 (70)	2001 (79)	2277 (90)
W,	мм (дюймы)	600 (24)	600 (24)	1022 (40)	1200 (47)	2792 (110)
D, 1	мм (дюймы)	378 (15)	494 (20)	378 (15)	494 (19)	605 (24)
Pac	спах дверей А, мм (дюймы)	574 (23)	577 (23)	577 (23)	577 (23)	590 (23)
Pac	спах дверей В, мм (дюймы)	n/a	n/a	395 (16)	577 (23)	784 (31)
Pac	спах дверей С, мм (дюймы)	n/a	n/a	n/a	n/a	590 (23)
Pac	спах дверей D, мм (дюймы)	n/a	n/a	n/a	n/a	784 (31)
	О (выход из воздушной полости), мм (дюймы)	225 (9)	225 (9)	225 (9)	225 (9)	225 (9)
Возд. охлаждение	C1	765 м³/ч (450 CFM)	1230 m³/ч (724 CFM)	IP 21/NEMA 1 510 м³/ч (300 CFM)	IP 21/NEMA 1 680 m³/ч (400 CFM) IP 54/NEMA 12 680 m³/ч (400 CFM)	IP 21/NEMA 1 4900 m³/ч (2884 CFM)
Bost	C2	340 m³/ч (200 CFM)	340 m³/ч (200 CFM)	IP 21/NEMA 1 2295 m³/ч (1350 CFM)	IP 21/NEMA 1 2635 m³/ч (1550 CFM) IP 54/NEMA 12 2975 m³/ч (1750 CFM)	IP 21/NEMA 1 6895 м³/ч (4060 CFM)
			AAF 250/310	1		
Macca	IP 21 / NEMA 1	238 (525)	429 (945) AAF 400	390 (860)	676 (1491)	1899 (4187)
	IP 54 / NEMA 12		453 (998)			
КП	•				0.96	
по, кле	кс. сечение кабеля, дключаемого к выходным еммам двигателя (на фазу), ^{2°} (AWG)				4 x 240 (4 x 500 mcm)	8 x 150 (8 x 300 mcm)
ка	кс. поперечное сечение беля к клеммам распределения грузки (на -=/+=)	n,	/a	2 x 185 (2 x 300 mcm)	(1X300 mem)	4 x 120 (4 x 250 mcm)
Ma	икс. сечение кабеля к клеммам зистора тормоза (на -R/+R)				2 x 185 (2 x 300 mcm)	4 x 185 (4 x 350 mcm)
	кс. поперечное сечение кабеля ходным клеммам сети (на фазу)				4 x 240 (4 x 500 mcm)	8 x 240 (8 x 500 mcm)
	икс. ток предохранителей (A), исокая перегрузка		ая информация а стр. 27	132 кВт @ 400 В: 400 160 кВт @ 400 В: 500 200 кВт @ 400 В: 630	250 κΒτ @ 400 B: 700 315 κΒτ @ 400 B: 900 355 κΒτ @ 400 B: 900 400 κΒτ @ 400 B: 900	450 κBτ @ 400 B: 1600 500 κBτ @ 400 B: 1600 560 κBτ @ 400 B: 2000 630 κBτ @ 400 B: 2000
	пловые потери при макс. грузке (Вт), высокая перегрузка			132 кВт @ 400 В: 8988 160 кВт @ 400 В: 10844 200 кВт @ 400 В: 11855	250 κBτ @ 400 B: 13311 315 κBτ @ 400 B: 14577 355 κBτ @ 400 B: 16396 400 κBτ @ 400 B: 17703	450 κBτ @ 400 B: 22401 500 κBτ @ 400 B: 25110 560 κBτ @ 400 B: 27323 630 κBτ @ 400 B: 31268

Paбoтa VLT High Power Drive в особых условиях


Hopмaльнaя перегрузка для VLT® HVAC Drive и VLT® AQUA Drive

Снижение выходного тока при использовании модели коммутации 60° AVM Кривая представляет снижение характеристик в 1,5%/С. Для более подробной информации используйте Руководство по проектированию.

Снижение номинальных характеристик при высоких температурах окружающей среды

Приводы серии VLT способны выдавать 100% номинального выходного тока в условиях с температурами воздуха до 45°С (со стандартными настройками). В условиях более высоких температур окружающей среды приводы серии VLT все же могут работать, понижая выходной ток в соответствии со следующими таблицами:

Как показано на графиках при температуре 55 °C приводы с высокой перегрузкой выдают выходной ток в размере 90%, а приводы с нормальной перегрузкой — 85%.

Варианты снижения номинальных характеристик в зависимости от несущей частоты, см. Руководство по проектированию для приводов VLT® HVAC Drive, VLT® AQUA Drive или VLT® AutomationDrive.

Нормальная перегрузка ■ Высокая перегрузка Высота (футы над уровнем моря) * Окр. температура [°C] 30 -Высота (метры над уровнем моря) *

Аналогично, с увеличением высоты над уровнем моря происходит снижение номинального выходного тока: Высота (футы над уровнем моря) * l_{out} [%] Высота (метры над уровнем моря) *

Снижение номинальных характеристик при больших высотах

Разрежение воздуха при увеличении высоты снижает эффективность охлаждения привода. Надежность работы при увеличении высоты может быть обеспечена, пока температура окружающего воздуха не выходит за пределы значений, указанных на рисунке слева:

^{*} Приводы 690 В ограничены параметром 6560′ (2000 м) над уровнем моря, исходя из требований PELV.

Фильтры VLT Advanced Harmonic Filters

Оптимизированные характеристики ослабления гармоник при использовании в сочетании с приводами VLT® FC мощностью до 250 кВт.

Фильтры Advanced Harmonic Filter компании Danfoss спроектированы специально для работы в сочетании с преобразователями частоты компании Danfoss в целях обеспечения непревзойденных эксплуатационных характеристик и оптимизации конструкции системы.

По сравнению с традиционными фильтрами гармонических составляющих данные фильтры имеют меньшую площадь монтажной поверхности и лучшие характеристики ослабления гармоник. Решение предлагается в двух вариантах исполнения: АНГ 005 и АНГ 010. При подключении перед преобразователем частоты VLT® компании Danfoss гармонические искажения тока, возвращаемые в электрическую сеть, уменьшаются до величины суммарного коэффициента гармоник тока 5 % и 10 % при полной нагрузке.

Благодаря своему КПД > 98 % пассивные фильтры Advanced Harmonic Filter представляют собой экономичные и исключительно надежные решения для ослабления гармоник, специально предназначенные для систем мощностью до 250 кВт.

В качестве автономных опций эти усовершенствованные фильтры гармоник характеризуются компактным корпусом, для которого легко найти место на имеющейся панели. Благодаря этому данные фильтры хорошо подходят для модернизации в условиях, когда допустима лишь ограниченная регулировка преобразователя частоты.

Линейное напряжение

- 380 415 B (50 and 60 Гц)
- 440 480 В (60 Гц)
- 500 525 В (50 Гц)*
- 690 В (50 Гц)

Ток фильтра

- 380 415 B, 50/60 Гц130 A – 1720 A
- 440 480 B, 60 Гц118 A – 1580 A

Напряжение

■ 500-525 и 690 В

Степень защиты

■ IP 20/IP 00

Технические характеристики

	AHF 010	AHF 005	
Суммарный коэффициент гармоник тока (THiD)* при: – нагрузке 40 % – нагрузке 70 % – нагрузке 100 %	~ 12% ~ 11% < 10%	~ 7% ~ 6% < 5%	
КПД* при нагрузке 100 %	>98.59	%	
Коэффициент активной мощности* при: – нагрузке 40 % – нагрузке 70 % – нагрузке 100 %	~ 81% ~ 96% > 99%	~ 80% ~ 95% > 98%	
Температура окружающей среды	45 °C без снижения номина	льных характеристик	
Охлаждение	Воздушное охлаждение посре	едством тыльного канала	

*По результатам измерений в электрической сети без предварительных искажений, не имеющей асимметрис

^ 110 результатам измерении в электрической сети без преоварительных искажении, не имеющей асимметрии							
Нормы и рекомендации	Соответствие						
IEEE519	АНF 005 — всегда АНF 010 — в зависимости от условий в электрической сети нагрузки						
IEC61000-3-2 (до 16 A)	Всегда						
IEC61000-3-12 (от 16 до 75 A)	Всегда						
IEC61000-3-4 (более 75 A)	Всегда						

Заказные коды и размеры

Фильтры VLT Advanced Harmonic Filters

Размеры Размеры в мм (дюймах)

Исполнение корпуса	А Высота	В Ширина	С Глубина
X5	747 (29)	370 (15)	333 (13)
X6	778 (31)	370 (15)	400 (16)
X7	909 (36)	468 (18)	450 (18)
X8	911 (36)	468 (18)	550 (22)

	Мощнос			AHF 005		AHF010			
	Ток (А)	двигателя (кВт)	Заказной код IP 20	Заказной код IP 00	Типоразмер	Заказной код IP 20	Заказной код IP 00	Типоразмер	
	133	75	130B1249	130B1444	X5	130B1207	130B1293	X5	
	171	90	130B1250	130B1445	X6	130B1213	130B1294	X6	
	204	110	130B1251	130B1446	X6	130B1214	130B1295	Х6	
	251	132	130B1258	130B1447	X7	130B1215	130B1369	X7	
	304	160	130B1259	130B1448	X7	130B1216	130B1370	X7	
	325	В параллель для 355 кВт	130B3152	130B3153	X8	130B3136	130B3151	Х7	
	381	200	130B1260	130B1449	X8	130B1217	130B1389	X7	
, =	480	250	130B1261	130B1469	X8	130B1228	130B1391	X8	
50 Гц	608	315	2 x 130B1259	2 x 130B1448		2 x 130B1216	2 x 130B1370		
B,	650	355	2 x 130B3152	2 x 130B3153		2 x 130B3136	2 x 130B3151		
380-415 B,	685	400	130B1259 + 130B1260	130B1448 + 130B1449		130B1216 + 130B1217	130B1370 + 130B1389		
₩	762	450	2 x 130B1260	2 x 130B1449		2 x 130B1217	2 x 130B1389		
	861	500	130B1260 + 130B1261	130B1449 + 130B1469		130B1217 + 130B1228	130B1389 + 130B1391		
	960	560	2 x 130B1261	2 x 130B1469		2 x 130B1228	2 x 130B1391		
	1140	630	3 x 130B1260	3 x 130B1449		3 x 130B1217	3 x 130B1389		
	1240	710	2 x 130B1260	2 x 130B1449		2 x 130B1217	2 x 130B1389		
	1440	800	+ 130B1261 3 x 130B1261	+ 130B1469 3 x 130B1469		+ 130B1228 3 x 130B1228	+ 130B1391 3 x 130B1391		
	1720	1000	2 x 130B1261 + 2 x 130B1261	2 x 130B1449 + 2 x 130B1469		2 x 130B1217 + 2 x 130B1228	2 x 130B1391 + 2 x 130B1391		
	133	75	130B2867	130B3129	X5	130B2498	130B3088	X5	
	171	90	130B2868	130B3130	X6	130B2499	130B3089	X6	
	204	110	130B2869	130B3131	X6	130B2500	130B3090	Х6	
	251	132	130B2870	130B3132	X7	130B2700	130B3091	X7	
	304	160	130B2871	130B3133	X8	130B2819	130B3092	X7	
	325	В параллель для 355 кВт	130B3156	130B3157	X8	130B3154	130B3155	Х7	
	381	200	130B2872	130B3134	X8	130B2855	130B3093	X7	
_ar	480	250	130B2873	130B3135	X8	130B2856	130B3094	X8	
20 [608	315	2 x 130B2871	2 x 130B3133		2 x 130B2819	2 x 130B3092		
В, 6	650	315	2 x 130b3156	2 x 130B3157		2 x 130B3154	2 x 130B3155		
380-415 В, 60 Гц	685	355	130B2871 + 130B2872	130B3133 + 130B3134		130B2819 + 130B2855	130B3092 + 130B3093		
38	762	400	2 x 130B2872	2 x 130B3134		2 x 130B2855	2 x 130B3093		
	861	450	130B2872 + 130B3135	130B3134 + 130B3135		130B2855 + 130B2856	130B3093 + 130B3094		
	960	500	2 x 130B2873	2 x 130B3135		2 x 130B2856	2 x 130B3094		
	1140	560	2 x 130B2872	3 x 130B3134		2 x 130B2855	3 x 130B3093		
	1240	630	2 x 130B2872 + 130B2873	2 x 130B3134 + 130B3135		2 x 130B2855 + 130B2856	2 x 130B3093 + 130B3094		
	1440	710	3 x 130B2873	3 x 130B3135		3 x 130B2856	3 x 130B3094		
	1720	800	2 x 130B2872 + 2 x 130B2873	2 x 130B3134 + 2 x 130B3135		2 x 130B2855 + 2 x 130B2856	2 x 130B3093 + 2 x 130B3094		

Коды для заказа и размеры Фильтры VLT Advanced Harmonic Filters

				AHF 005		AHF010			
	Ток (А)	Мощность двигателя	Заказной код IP 20	Заказной код IP 00	Типоразмер	Заказной код IP 20	Заказной код IP 00	Типоразмер	
	118	100 л.с.	130B1762	130B1797	X5	130B1494	130B1780	X5	
	154	125 л.с.	130B1763	130B1798	X6	130B1495	130B1781	X6	
	183	150 л.с.	130B1764	130B1799	X6	130B1496	130B1782	Х6	
	231	200 л.с.	130B1765	130B1900	X7	130B1497	130B1783	X7	
	291	250 л.с.	130B1766	130B2200	X8	130B1498	130B1784	X7	
	355	300 л.с.	130B1768	130B2257	X8	130B1499	130B1785	X7	
	380		130B1767	130B3168	X8	130B3165	130B3166	X7	
Į.	436	350 л.с., в параллель для 650 л.с.	130B1769	130B2259	X8	130B1751	130B1786	X8	
440-480 В, 60 Гц	522	450 л.с.	130B1765 + 130B1766	130B1900 + 130B2200		130B1497 + 130B1498	130B1783 + 130B1784		
-48	582	500 л.с.	2 X 130B1766	2 x 130B2200		2 x 130B1498	2 x 130B1784		
440	671	550 л.с.	130B1766 +130B3167	130B2200 + 130B3166		130B1498 + 130B3165	130B1784 + 130B3166		
	710	600 л.с.	2 X 130B1768	2 x 130B2257		2 x 130B1499	2 x 130B1785		
	760	650 л.с.	2 X 130B3167	2 x 130B3168		2 x 130B3165	2 x 130B3166		
	872	750 л.с.	2 X 130B1769	2 x 130B2259		2 x 130B1751	2 x 130B1786		
	1065	900 л.с.	3 X 130B1768	3 x 130B2257		3 x 130B1499	3 x 130B1785		
	1140	1000 л.с.	3 X 130B3167	3 x 130B3168		3 x 130B3165	3 x 130B3166		
	1308	1200 л.с.	3 x 130B1769	3 x 130B2259		3 x 130B1751	3 x 130B1786		
	1582	1350 л.с.	2 x 130B1768 + 2 x 130B1769	2 x 130B2257 + 2 x 130B2259		2 x 130B1499 + 2 x 130B1751	2 x 130B1785 + 2 x 130B1786		
	109	75 кВт	130B5172	130B5026	X6	130B5289	130B5327	Х6	
	128	90 кВт	130B5195	130B5028	X6	130B5290	130B5328	X6	
	155	110 кВт	130B5196	130B5029	X7	130B5291	130B5329	X7	
	197	132 кВт	130B5197	130B5042	X7	130B5292	130B5330	X7	
	240	160 кВт	130B5198	130B5066	X8	130B5293	130B5331	X7	
	296	200 кВт	130B5199	130B5076	X8	130B5294	130B5332	X8	
	366	250 кВт	2 x 130B5197	2 x 130B5042		130B5295	130B5333	X8	
₫	395	315 кВт	2 x 130B5197	2 x 130B5042		130B5296	130B5334	X8	
) B, 50	437	355 кВт	130B5197 + 130B5198	130B5042 + 130B5066		130B5292 + 130B5293	130B5330 + 130B5331		
500-690 В, 50 Гц	536	400 кВт	130B5198 + 130B5199	130B5066 + 130B5076		130B5292 + 130B5294	130B5331 + 130B5332		
γ.	592	450 кВт	2 x 130B5199	2 x 130B5076		2 x 130B5294	2 x 130B5332		
	662	500 кВт	+ 130B5199 97	130B5076 + 2 x 130B5042		130B5294 + 130B5295	130B5332		
	732	560 кВт	4 x 130B5197	4 x 130B5042		2 x 130B5295	2 x 130B5333		
	888	670 кВт	3 x 130B5199	3 x 130B5076		3 x 130B5294	3 x 130B5332		
	958	750 кВт	2 x 130B5199 + 2 x 130B5197	2 x 130B5076 + 2 x 130B5042		2 x 130B5294 + 130B5295	2 x 130B5332 + 130B5333		
	1098	850 кВт	6 x 130B5197	6 x 130B5042		3 x 130B5295	3 x 130B5333		
	87	75 л.с.	130B5254	130B5269	X6	130B5220	130B5237	X6	
	109	100 л.с.	130B5255	130B5270	X6	130B5221	130B5238	X6	
	128	125 л.с.	130B5256	130B5271	X6	130B5222	130B5239	X6	
	155	150 л.с.	130B5257	130B5272	X7	130B5223	130B5240	X7	
	197	200 л.с.	130B5258	130B5273	X7	130B5224	130B5241	X7	
	240	250 л.с.	130B5259	130B5274	X8	130B5225	130B5242	X7	
#	296	300 л.с.	130B5260	130B5275	X8	130B5226	130B5243	X8	
109	366	350 л.с.	2 x 130B5258	2 x 130B5273		130B5227	130B5244	X8	
600 В, 60 Гц	395	400 л.с.	2 x 130B5258	2 x 130B5273		130B5228	130B5245	X8	
009	480	500 л.с.	2 x 130B5259	2 x 130B5274		2 x 130B5225	2 x 130B5242		
	592	600 л.с.	2 x 130B5260	2 x 130B5275		2 x 130B5226	2 x 130B5243		
	732	650 л.с.	3 x 130B5259	3 x 130B5274		2 x 130B5227	2 x 130B5244		
	732	750 л.с.	3 x 130B5259	3 x 130B5274		2 x 130B5227	2 x 130B5244		
	888	950 л.с.	3 x 130B5260	3 x 130B5275		3 x 130B5226	3 x 130B5243		
	960	1050 л.с.	4 x 130B5259	4 x 130B5274		3 x 130B5227	3 x 130B5244		
	1098	1150 л.с.	4 x 130B5260	4 x 130B5275		3 x 130B5227	3 x 130B5244		
	1580	1350 л.с.				3 x 130B5227	3 x 130B5244		

Выходные фильтры

Для чего использовать выходные фильтры?

- Защита изоляции двигателя
- Уменьшение аккустического шума от двигателя
- Уменьшение высокочастотных помех в кабеле двигателя
- Уменьшение подшипниковых токов и напряжения на валу

Применение

Синусоидальные фильтры

- Применения, где необходимо исключить аккустический шум от двигателя
- Модернизация с использованием старых двигателей с плохой изоляцией
- Применения с рекуперацией и двигателями, несоответствующими нормам IEC 600034-17
- Когда двигатель работает в тяжелых условиях и при высоких температурах
- Применения с длинами кабелей от 150 до 300 м (экранированный или неэкранированный). Применение кабелей больших длин зависит от применения

- Применения с долгими межсервисными интервалами
- Применения с двигателями на 690В
- Применения с питающим трансформатором.

dU/dt фильтр

- Применения с частыми торможениями
- Двигатели, которые не предназначенны для работы с ПЧ
- Двигатели работающие в тяжелых условиях и при высоких температурах
- Применения, где есть риск возникновения пробоя изоляции
- Модернизация двигателей не совместимых с IEC 600034-17
- Применения с небольшой длиной кабеля (менее 15 м)
- Применения 690В

Фильтры синфазных помех

- Применения с неэкранированными кабелями
- Не должны использоваться как единственный способ борьбы с гармониками.

Уменьшение аккустического шума от двигателя

- 1. Магнитный шум, производимый сердечником двигателя
- 2. Шум производимый подшипниками двигателя
- 3. Шум, производимый вентиляцией двигателя

При питании двигателя от преобразователя частоты длительность импульса модулированного напряжения вызывает дополнительный магнитный шум на частоте переключения и гармонические искажения (обычно частотой в два раза больше).

В некоторых применениях это недопустимо. Для того, чтобы удалить этот дополнительный шум должен использоваться синусный фильтр. Это позволит отфильтровать форму импульса напряжения преобразователя частоты и обеспечить синусоидальность напряжжения на клеммах двигателя.

Критерий работы	du/dt фильтры	Синусные фильтры	Фильтры синфазных помех
Износ изоляции двигателя	С длиной кабеля до 150 м (экранированный) неэкранированный/неэкранированный) соответствует требованиям IEC60034-17 (двигатели общего назначения). Выше этой длины есть риск возникновения двойной пульсации.	Обеспечивают синусоидальность напряжения на клемах двигателя. Обеспечивают совместимость с IEC60034-17* и NEMA-MG1 для двигателей общего назначения с длиной кабеля до 500 м (1 км для типоразмеров D и более).	Не уменьшают износ изоляции
Износ подшипников двигателя	Немного уменьшает, в большей части в мощных двигателях.	Уменьшают подшипниковые токи, вызываемые блуждающими токами. Не уменьшают синфазные токи (токи на валу).	Уменьшают износ подшипников за счет ограничения синфазных токов.
ЭМС совместимость	Исключает шум в кабеле. Не изменяет уровень излучения. Не позволяет работать с кабелями большей длины чем это позволяет встроенный фильтр ЭМС.	Исключает шум в кабеле. Не изменяет уровень излучения. Не позволяет работать с кабелями большей длины чем это позволяет встроенный фильтр ЭМС.	Уменьшает высокочастотные излучения (свыше 1 Мгц). Не меняет класс фильтра ЭМС. Не позволяет работать с длинами кабелей больше чем номинальные.
Максимальная длина кабеля	100150 м Обеспечивая ЭМС совместимость: 150 м экранированный Обеспечивая ЭМС совместимость: 150 м неэкранированный	Обеспечивая ЭМС совместимость: 150 м экранированный и 300 м неэкранированный (только кондуктивное излучение). Без обеспечения ЭМС совместимости: До 500 м (1 км для типоразмеров D и более)	300 м экранированный (типоразмеры D,E, F) 300 м неэкранированный
Аккустический шум	Не уменьшают аккустический шум.	Умешьшает шум, вызываемый магнитострикцией	Не убирают аккустический шум.
Относительный размер	15 – 50% (в зависимости от мощности).	100%	5 – 15%
Относительная цена	50%	100%	Нет

^{*} Не для 690В.

Фильтры синфазных помех VLT

комплект для ослабления

электромагнитных помех

Комплект колец для устранения высокочастотных синфазных помех обеспечивает ослабление электромагнитных помех и позволяет предотвратить повреждение подшипников вследствие электрического разряда

Кольца для устранения высокочастотных синфазных помех (HF-CM) представляют собой специальные нанокристаллические магнитные кольца, фильтрующие характеристики которых превосходят показатели обычных ферритовых аналогов. Кольца работают подобно катушке индуктивности для синфазного сигнала (между фазой и землей).

Опоясывая три фазы электродвигателя (U, V, W), кольца уменьшают высокочастотные синфазные токи. В результате снижаются высокочастотные электромагнитные помехи от кабеля электродвигателя. Однако данный комплект колец не следует рассматривать как единственную меру по устранению помех. Даже в случае использования колец следует соблюдать правила по обеспечению электромагнитной совместимости оборудования.

Защита электродвигателя от подшипниковых токов

Наиболее важной функцией является уменьшение высокочастотных токов, которые связаны с электрическими разрядами, порожденными протекающими в электродвигателе токами. Такие разряды вносят свой вклад в преждевременный износ подшипников электродвигателя и их выход из строя. Снижение или даже полное устранение разрядов дает в результате сокращение износа и увеличение срока службы подшипников. Таким образом, снижаются затраты на техническое обслуживание и издержки вследствие простоев оборудования.

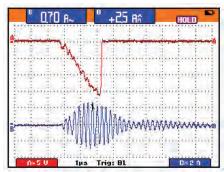
Идеальный выбор для модернизации

Проблемы с паразитными токами в

Свойства	Преимущества
– Нанокристаллический магнитный материал с высокими эксплуатационными характеристиками	 Эффективное снижение электрических разрядов в подшипниках электродвигателей Сокращение износа подшипников, затрат на техническое обслуживание и издержек вследствие простоев оборудования Снижение высокочастотных электромагнитных помех от кабеля электродвигателя
 Овальная форма Масштабируемое решение: возможность использования нескольких колец при большой длине кабеля 	– Удобство установки в условиях ограниченного пространства, например в корпусе изделия VLT® или распределительной коробке электродвигателя
– Всего 4 типоразмера колец охватывают весь диапазон мощностей VLT®	 Простота материально-технического обеспечения, быстрая доставка и комплексная программа технического обслуживания и ремонта Возможность добавления в комплект инструмента для сервисного обслуживания
– Малые капиталовложения	 – Экономичная альтернатива, например, синусоидальным фильтрам, если единственная проблема, которую требуется устранить, — это износ подшипников под действием электрических разрядов

подшипниках чаще всего выявляются после ввода оборудования в эксплуатацию. Поэтому овальная форма колец делает их идеальным выбором для модернизации и установки в условиях ограниченного пространства. Всего 4 варианта исполнения колец охватывают всю номенклатуру продукции VLT®, что позволяет хранить эти полезные технические средства в комплекте инструмента для сервисного обслуживания.

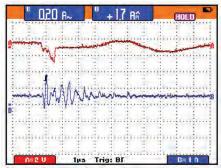
Гибкое решение

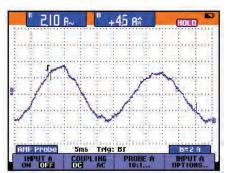

Кольца могут использоваться в сочетании с другими выходными фильтрами. Особенно это касается применения комбинации с фильтрами dU/dt, которая позволяет получить недорогое решение для защиты подшипников и изоляции электродвигателя.

Номенклатура продукции

- Предлагаются кольца для всего диапазона мощностей от 0,18 кВт до 1,4 МВт.
- 4 типоразмера колец охватывают весь диапазон мощностей VLT®.

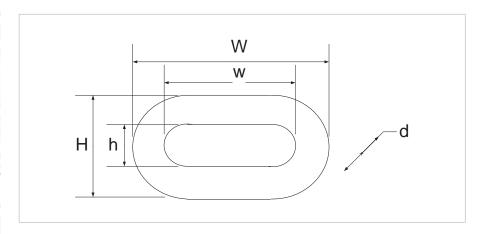
Выбор колец HF-CM


Кольца могут устанавливаться у выходных клемм преобразователя частоты (U, V, W) или в распределительной коробке двигателя. При установке у клемм преобразователя частоты комплект колец HF-CM обеспечивает снижение нагрузки на подшипники и ослабление высокочастотных электромагнитных помех от кабеля двигателя. Количество колец зависит от длины кабеля двигателя и напряжения преобразователя частоты. Таблица для выбора типоразмера колец приведена справа.


Напряжение на валу и подшипниковый ток без использования колец

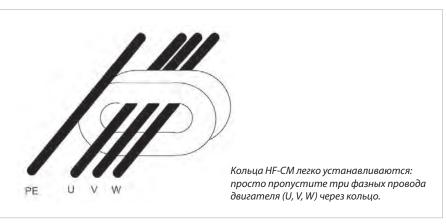
° 20	1 A~	В	- Bê	HOLE	
1				4 - 114 - 114	
10000000				dan bin	
ii					
В., " <i>"</i> . "		<u> </u>	المهل		
1			/	dan	
***	يرائين أير		dindin	d l	
	, du du	da da	du du	J	
AMP Probe	5ms	Trig: B	r	B~ 2	n

Ток возврата через землю без использования колец


Напряжение на валу и подшипниковый ток с использованием колец

Ток возврата через землю с использованием колец

D	Типора	змер D	Типоразмер E и F		
Длина кабеля, м	T4/T5	T7	T5	T7	
50	2	4	2	2	
100	4	4	2	4	
150	4	4	4	4	
300*	4	6	4	4	


*При использовании более длинных кабелей просто требуется установить дополнительное . количество колец HF-CM.

Номера для заказа и габаритные размеры Номера для заказа комплектов колец (по 2 кольца в упаковке) приведены в нижеследующей таблице.

Типоразмер привода	код для	Рамзеры колец, [мм]					Macca	Размер упаковки
VLT®	заказа	W	w	Н	h	d	[кг]	[мм]
D	130B3259	189	143	126	80	37	2.45	235 x 190 x 140
ЕиГ	130B3260	305	249	147	95	37	4.55	290 x 260 x 110

Установка

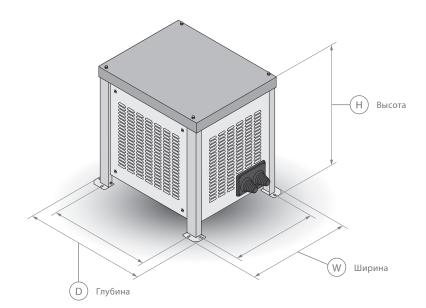
Силовая опция VLT® — фильтр dU/dt

Фильтры dU/dt снижают величины dU/dt междуфазного напряжения на клеммах двигателя — важный аспект для коротких кабелей двигателей.

Это дифференциально-модовые фильтры, которые снижают выбросы междуфазного пикового напряжения на клеммах электродвигателя и уменьшают время нарастания до уровня, который позволяет снизить нагрузку на изоляцию обмоток двигателя. В отличие от синусоидальных фильтров, частота среза фильтров dU/dt выше частоты коммутации. Напряжение на клеммах двигателя по-прежнему имеет форму ШИМ-импульсов, но время нарастания и пиковые напряжения

снижены. Фильтры dU/dt меньше, легче и дешевле синусоидальных фильтров. Кроме того, благодаря меньшим значениям индуктивности и емкости фильтры dU/dt вносят пренебрежимо малое реактивное сопротивление между инвертором и двигателем и поэтому подходят для областей применения с высокой динамикой.

Превосходство перед выходными дросселями


Выходные дроссели вызывают незатухающие колебания на клеммах двигателя, увеличивающие опасность удвоения напряжения, а также перенапряжений, величина которых вдвое превышает напряжение цепи постоянного тока. Фильтры dU/dt являются LC-фильтрами нижних частот с четко определенной частотой среза. Поэтому затухающие колебания на клеммах двигателя подавляются, а также снижается риск удвоения напряжения и пиков напряжения.

Качество и конструкция

Все фильтры dU/dt спроектированы и испытаны для работы с приводами VLT® AutomationDrive FC 302, VLT® AQUA Drive FC 202 и VLT® HVAC Drive FC 102. По своему внешнему виду и качеству фильтры не уступают приводам серии VLT® FC.

Преимущества

- Совместимость со всеми принципами управления, включая регулирование вектора магнитного потока и VV/C+
- Параллельная установка фильтров для применения в диапазоне большей мощности.

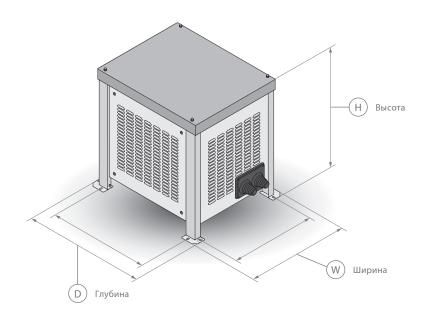
Размеры — все устройства устанавливают напольно

Степень	Код для	Высота		Ширина		Глубина	
защиты IP	заказа	ММ	дюймы	ММ	дюймы	MM	дюймы
	130B2847	300	12	190	7	235	9
ID OO	130B2849	300	12	250	10	235	9
IP 00	130B2851	350	14	250	10	270	11
	130B2853	400	16	290	11	283	11
	130B2848						
ID 22	130B2850	425	17	700	28	620	24
IP 23	130B2852						
	130B2854	792	31	940	37	918	36

Один фильтр идет на один инверторный модуль.

Для более детальной информации используйте руководство по проектированию выходных фильтров.

Технические характеристики


		380-50	0 B (T5)			525-690 B (T7)								
400 B	, 50 Гц	460 B,	, 60 Гц	500 B, 441-		525 B 525-		575 B,	, 60 Гц	690 B, 525-	, 50 Гц 550 В	Типоразмер	Коды дл	я заказа
кВт*	Α	л.с.*	Α	кВт*	Α	кВт*	Α	л.с.*	Α	кВт*	Α	Размер	IP 00	IP 23
90	177	125	160	110	160	90	137	125	131			D1h/D3h/D5h/D6h		
110	212	150	190	132	190	110	162	150	155	110	131	D1h/D3h/D5h/D6h		
132	260	200	240	160	240	132	201	200	192	132	155	D1h/D3h/D5h/D6h, D2h, D4h, D7h, D8h, D13	130B2847	130B2848
160	315	250	302	200	302	160	253	250	242	160	192	D2h, D4h, D7h, D8h, D13		
200	395	300	361	250	361	200	303	300	290	200	242	D2h, D4h, D7h, D8h, D13		
250	480	350	443	315	443	250	360	350	344	250	290	D2h, D4h, D7h, D8h, D13, E1/E2, E9, F8/F9	130B2849	130B3850
315	600	450	540	355	540	315	429	400	410	315	344	E1/E2, E9, F8/F9		
355	658	500	590	400	590	355	470	450	450	355	380	E1/E2, E9, F8/F9	130B2851	130B2852
										400	410	E1/E2, F8/F9		
										450	450	E1/E2, F8/F9		
400	745	600	678	500	678	400	523	500	500	500	500	E1/E2, E9, F8/F9	130B2853	130B2854
450	800	600	730	530	730	450	596	600	570	560	570	E1/E2, E9, F8/F9	13002033	13002034
						500	630	650	630	630	630	E1/E2, F8/F9		
450	800	600	730	530	730							F1/F3, F10/F11, F18	2 x 130B2849 ^{2) 4)}	2 x 130B2850 ^{2) 4)}
500	880	650	780	560	780	500	659	650	630			F1/F3, F10/F11, F18	2 X 13002043	2 X 130D2030
										6302)	6302)	F1/F3, F10/F11		
560	990	750	890	630	890	560	763	750	730	710	730	F1/F3, F10/F11, F18	2 x 130B2851 ⁴⁾	2 x 130B2852 ⁴⁾
630	1120	900	1050	710	1050	670	889	950	850	800	850	F1/F3, F10/F11, F18		
710	1260	1000	1160	800	1160	750	988	1050	945			F1/F3, F10/F11, F18	2 x 130B2851 ⁴⁾	2 x 130B2852 ⁴⁾
										900	945	F1/F3, F10/F11	2 x 130B2853 ⁴⁾	2 x 130B2854 ⁴⁾
710	1260	1000	1160	800	1160	750	988	1050	945			F2/F4, F12/F13	3 x 130B2849 ⁵⁾	3 x 130B2850 ⁵⁾
										900	945	F2/F4, F12/F13		
800	1460	1200	1380	1000	1380	850	1108	1150	1060	1000	1060	F2/F4, F12/F13	3 x 130B2851 ⁵⁾	3 x 130B2852 ⁵⁾
1000	1720	1350	1530	1100	1530	1000	1317	1350	1260	1200	1260	F2/F4, F12/F13	- 400B005=5	
						1100	1479	1550	1415	1400	1415	F2/F4, F12/F13	3 x 130B2853 ⁵⁾	3 x 130B2854 ⁵⁾

1) Для расчета снижения характеристик при 60 Гц = 0,94*50 Гц и 100 Гц=0,75*50 Гц.
2) Для этих характеристик можно использовать один фильтр 130D2853 или 130B2854 с опцией кронштейна для клемм, который используется для подключения кабелей от двух инверторов.
3) 525 В требует исполнения Т7 (525-690 В).
4) Привод состоит из двух инверторов. На каждый модуль устанавливается фильтр.
5) Привод состоит из трех инверторов. На каждый модуль устанавливается фильтр.
8 Мощность не является частью типкода привода.

Силовая опция VLT® – синусоидальный фильтр

Выходные синусоидальные фильтры — это фильтры нижних частот, которые подавляют составляющую частоты коммутации привода и сглаживают междуфазное выходное напряжение привода до синусоидальной формы. Это обеспечивает снижение нагрузки на изоляцию двигателя и уменьшение подшипниковых токов.

Размеры — все устройства устанавливаются напольно

Степень	Код для	Выс	ота	Шир	оина	Γлуб	бина
защиты IP	заказа	ММ	дюймы	ММ	дюймы	ММ	дюймы
	130B3182	580	23	470	19	311	12
	130B3184	520	20	500	20	350	14
	130B3186 130B3188	520	20	500	20	400	16
	130B3191 130B3193	620	24	620	24	583	23
IP 00	130B4118	520	20	470	19	332	13
	130B4121	470	19	500	20	400	16
	130B4125	535	21	660	26	460	18
	130B4129 130B4152	660	26	800	32	610	24
	130B4154	660	26	800	32	684	27
	130B4156	490	19	800	32	713	28
	130B3183 130B3185 130B3187	918	36	904	36	792	31
	130B3189 130B3192 130B3194	1161	46	1260	50	991	39
IP 23	130B4119	715	28	798	31	620	24
	130B4124	918	36	940	37	792	31
	130B4126 130B4151 130B4153 130B4155 130B4157	1161	46	1260	49,61	991	39

Один фильтр идет на один инверторный модуль.

Для более детальной информации используйте руководство по проектированию выходных фильтров.

Подача в двигатель синусоидального напряжения также обеспечивает устранение акустического шума двигателя при коммутации.

Тепловые потери и подшипниковые токи

Подача в двигатель синусоидального напряжения снижает тепловые потери на гистерезис в двигателе. Поскольку ресурс изоляции двигателя зависит от температуры двигателя, то синусоидальный фильтр обеспечивает продление срока службы самого двигателя.

Кроме того, синусоидальное напряжение на клеммах двигателя, которое обеспечивает синусоидальный фильтр, имеет еще одно преимущество — подавление подшипниковых токов в двигателе. Это снижает опасность искрового пробоя в подшипниках двигателя и, тем самым, также способствует продлению срока службы двигателя и увеличению интервалов обслуживания.

Качество и конструкция

Все фильтры спроектированы и испытаны для работы с приводами VLT® AutomationDrive FC 302, VLT® AQUA Drive FC 202 и VLT® HVAC Drive FC 102. Они совпадают по номинальной частоте коммутации с приводами серии VLT® FC, и поэтому снижение номинальных характеристик привода не требуется.

По своему внешнему виду и качеству корпус изделия аналогичен корпусам приводов серии VLT ® FC.

Преимущества

- Совместимость со всеми принципами управления, включая регулирование вектора магнитного потока и VVC+.
- Параллельная установка фильтров для применения в диапазоне большей мощности.

Технические характеристики приводов 380-500 В

	400 B	, 50 Гц	460 B			, 50 Гц	Типоразмер	Колы д	1 я заказ
	кВт	А	л.с.	А	кВт	А	Размер	IP 00	IP 23
	90	177	125	160	110	160	D1h/D3h/D5h/D6h	130B3182	130B3183
	110	212	150	190	132	190	D1h/D3h/D5h/D6h		
	132	260	200	240	160	240	"D D1h/D3h/D5h/D6h,13 2h, D4h, D7h, D8h, D"	130B3182	130B3183
	160	315	250	302	200	302	D2h, D4h, D7h, D8h, D13	12002106	12002107
	200	395	300	361	250	361	D2h, D4h, D7h, D8h, D13	130B3186	130B3187
	250	480	350	443	315	443	D2h, D4h, D7h, D8h, D13, E1/ E2, E9, F8/F9	130B3188	130B3189
В	315	600	450	540	355	540	E1/E2, E9, F8/F9	130B3191	130B3192
	355	658	500	590	400	590	E1/E2, E9, F8/F9	13003191	13003192
380-500	400	745	600	678	500	678	E1/E2, E9, F8/F9	130B3193	130B3194
88	450	800	600	730	530	730	E1/E2, E9, F8/F9	13003193	
m	450	800	600	730	530	730	F1/F3, F10/F11, F18	2 x 130B3186 ¹⁾	2 x 130B3187 ¹⁾
	500	880	650	780	560	780	F1/F3, F10/F11, F18	2 x 130B3188 ¹⁾	2 x 130B3189 ¹⁾
	560	990	750	890	630	890	F1/F3, F10/F11, F18	2 X 130D3100	2 X 130D3109
	630	1120	900	1050	710	1050	F1/F3, F10/F11, F18	2 x 130B3191 ¹⁾	2 x 130B3192 ¹⁾
	710	1260	1000	1160	800	1160	F1/F3, F10/F11, F18	2 X 13003191	2 X 130D3192
	710	1260	1000	1160	800	1160	F2/F4, F12/F13	3 x 130B3188 ²⁾	3 x 130B3189 ²⁾
	800	1460					F2/F4, F12/F13	2 X 120D2100	2 V 12002103
			1200	1380	1000	1380	F2/F4, F12/F13	3 x 130B3191 ²⁾	3 x 130B3192 ²⁾
	1000	1720	1350	1530	1100	1530	F2/F4, F12/F13	3 X 13003131	3 X 13003172 ·

 $^{^{1)}}$ Привод состоит из двух инверторов. На каждый модуль устанавливается фильтр. $^{2)}$ Привод состоит из трех инверторов. На каждый модуль устанавливается фильтр.

Технические характеристики приводов 525-690 B

	технические характеристики приводов 323-090 в								
	525 B,	, 50 Гц	575 B	, 60 Гц	690 B	, 50 Гц	Типоразмер	Коды ді	пя заказ
	кВт	А	л.с.	А	кВт	А	Размер	IP 00	IP 23
	75	113	100	108	90	108	D1h/D3h/D5h/D6h	130B4118	130B4119
	90	137	125	131	110	131	D1h/D3h/D5h/D6h	130B4121	130B4124
	110	162	150	155	132	155 D1h/D3h/D5h/D6h		13004121	13004124
	132	201	200	192	160	192	D1h/D3h/D5h/D6h, D2h, D4h, D7h, D8h	130B4125	130B4126
	160	253	250	242	200	242	D2h, D4h, D7h, D8h		
	200	303	300	290	250	290	D2h, D4h, D7h, D8h	130B4129	130B4151
	250	360			315	344	D2h, D4h, D7h, D8h, F8/F9	13004129	13004131
			350	344	355	380	D2h, D4h, D7h, D8h, F8/F9		
В	315	429	400	400	400	410	D2h, D4h, D7h, D8h, E1/E2, F8/F9	130B4152	130B4153
969			400	410			E1/E2, F8/F9		
525-690	355	470	450	450	450	450	E1/E2, F8/F9	130B4154	130B4155
52	400	523	500	500	500	500	E1/E2, F8/F9		
	450	596	600	570	560	570	E1/E2, F8/F9	130B4156	130B4157
	500	630	650	630	630	630	E1/E2, F8/F9	13004130	13004137
	500	659			630	630	F1/F3, F10/F11	2 x 130B4129 ¹⁾	2 x 130B4151 ¹⁾
			650	630			F1/F3, F10/F11	2 x 130B4152 ¹⁾	2 x 130B4153 ¹⁾
	560	763	750	730	710	730	F1/F3, F10/F11	2 X 13004132	2 X 13004133
	670	889	950	850	800	850	F1/F3, F10/F11	2 x 130B4154 ¹⁾	2 x 130B4155 ¹⁾
	750	988	1050	945	900	945	F1/F3, F10/F11	2 X 13004134	2 X 130D+133
	750	988	1050	945	900	945	F2/F4, F12/F13	3 x 130B4152 ²⁾	3 x 130B4153 ²⁾
	850	1108	1150	1060	1000	1060	F2/F4, F12/F13		
	1000	1317	1350	1260	1200	1260	F2/F4, F12/F13	3 x 130B4154 ²⁾	3 x 130B4155 ²⁾

¹⁾ Привод состоит из двух инверторов. На каждый модуль устанавливается фильтр. ²⁾ Привод состоит из трех инверторов. На каждый модуль устанавливается фильтр.

Тормозные резисторы

Применяются для рассеивания энергии, возникающей при торможении.

При резком уменьшении скорости двигатель ведет себя как генератор и начинает осуществлять торможение. При этом двигатель передает энергию в промежуточную цепь преобразователя частоты.

Функцией тормозного резистора является обеспечение нагрузки в промежуточной цепи при торможении. При этом энергия, возникающая при торможении, рассеивается в резисторе.

Если не использовать тормозной резистор, напряжение в промежуточной цепи будет расти до техпор пока не сработает защита ПЧ.

Преимуществом использования тормозного резистора является возможность осуществлять быстрое торможение тяжелых нагрузок, например ленты конвейера.

Компания «Данфосс» предлагает тормозные резисторы как внешние опции для преобразователя частоты.

Внешние тормозные резисторы имеют следующие преимущества:

- Можно выбирать время цикла.
- Тепло вырабатываемое при торможении можно выводить из шкафа управления.
- Не происходит перегрева электронных компонентов даже при перегрузке резисторов.

«Данфосс» предлагает различные типы резисторов. Необходимый вам тип резистора можно выбрать из таблицы на следующей странице. Для более подробной информации используйте руководство по проектированию - MG.90.0x.yy.

Требования по выбору резисторов зависят от применения. При выборе резистора обязательно используйте руководство по проектированию.

Основные данные для выбора:

- цикл работы, сопротивление и рассеиваемая мощность
- минимальное сопротивление привода.

Данная таблица содержит информацию по минимальному и номимальному размеру резисторов:

- R_{min} это минимальное сопротивление, которое может быть подсоединено к преобразователю. Большие приводы имеют несколько тормозных транзисторов. Все резисторы должны быть подключены к каждому тормозному резистору.
- R_{min} считается соединением всех сопротивлений резисторов в параллель.
- R_{nom} это номинальное сопротивление необходимое для достижения максимального перегрузочного тормозного момента.

Данные для типоразмера D:

- Допускает 100% момент 4 минуты сверх 10 минут
- Допускает 150% момент 1 минута сверх 10 минут

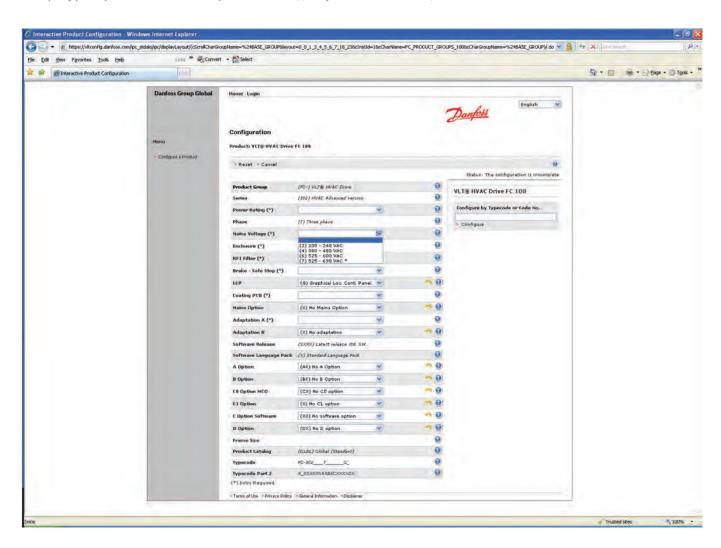
Данные для типоразмера E и F:

- Допускает 100% момент 4 минуты сверх 10 минут
- Допускает 150% момент 0,5 минут сверх 10 минут
- η_{motor} обычно равно 0,95
- η_{уіт} обычно равно 0,98
- $lackbox{\blacksquare} P_{\text{peak}} = P_{\text{motor}} \times \%$ Тормозной момент \times $\eta_{\text{motor}} \times \eta_{\text{VLT}} [\text{Bt}]$
- $\blacksquare R_{br} = Udc^2 / P_{peak} [\Omega]$

380-500 BUdc = 810 B 525-690 BUdc = 1099 B

		380-500 B					
	Характеристики преобразователя частоты						
AutomationDrive FC 302	P _{m (HO)}	Количество клемм ¹⁾	R _{min}	R _{br, nom}			
T5	кВт						
N90K	90	1	3,8	5,1			
N110	110	1	3,2	4,2			
N132	132	1	2,6	3,5			
N160	160	1	2,1	2,9			
N200	200	1	1,6	2,3			
N250	250	1	1,2	1,8			
P250	250	1	1,2	1,8			
P315	315	1	1,2	1,5			
P355	355	1	1,2	1,3			
P400	400	1	1,1	1,1			
P450	450	2	0,9	1,0			
P500	500	2	0,9	0,91			
P560	560	2	0,8	0,82			
P630	630	2	0,7	0,72			
P710	710	3	0,6	0,64			
P800	800	3	0,5	0,57			

	525-690 B						
	Характеристики преобразователя частоты						
AutomationDrive FC 302 (нормальная перегрузка)	P _{m (HO)}	Количество клемм ¹⁾	R_{min}	$R_{br,nom}$			
T5	кВт						
N90K	90	1	3,8	5,1			
N110	110	1	3,2	4,2			
N132	132	1	2,6	3,5			
N160	160	1	2,1	2,9			
N200	200	1	1,6	2,3			
N250	250	1	1,2	1,8			
P250	250	1	1,2	1,8			
P315	315	1	1,2	1,5			
P355	355	1	1,2	1,3			
P400	400	1	1,1	1,1			
P450	450	2	0,9	1,0			
P500	500	2	0,9	0,91			
P560	560	2	0,8	0,82			
P630	630	2	0,7	0,72			
P710	710	3	0,6	0,64			
P800	800	3	0,5	0,57			
P710	710	3	0,6	0,64			
P800	800	3	0,5	0,57			
P710	710	3	0,6	0,64			


R_{min} = Минимальное тормозное сопротивление , которое может быть подключено к приводу. Если привод включает в себя несколько тормозных резисторов, значение сопротивления это сумма всех сопротивлений, соединенных в параллель.

R_{Dr. norm} = Номинальное сопротивление для получения 150% тормозного момента.
R_{pr} = Рекомендованное значение сопротивления для тормозного резистора Danfoss.

¹⁾ Большие приводы включают в себя несколько модулей инверторов и тормозными терминалами в каждом инверторе. Соответствующие резисторы должны быть подключены к каждому тормозному терминалу.

Сконфигурируйте привод VLT® в соответствии со своими потребностями на сайте http://driveconfig.danfoss.com

Конфигуратор привода предоставляет возможность конфигурирования (выбора) надлежащего привода для ваших целей. Вам не нужно следить за тем, возможен ли выбор тех или иных комбинаций, поскольку конфигуратор позволяет выбирать только доступные комбинации.

Конфигуратор привода

Конфигуратор привода компании Danfoss — это простое в использовании, но обладающее широкими возможностями инструментальное средство для конфигурирования преобразователя частоты VLT® компании Danfoss в точном соответствии с вашими требованиями.

Конфигуратор привода генерирует уникальный артикул для необходимого вам привода, предотвращая возможность ошибки во время ввода заказа. Также поддерживается возможность «декодирования»: введите код и конфигуратор привода декодирует конфигурацию вашего привода и покажет ее. Кроме того, поддерживается «инженерный анализ»: введите артикул, и конфигуратор привода покажет точную конфигурацию соответствующего привода, включая все опции и специальные функции. Еще одним преимуществом использования конфигуратора привода является то, что он точно указывает доступные опции и функции, предотвращая возможность выбора несовместимых и бессмысленных комбинаций.

Если вам необходима замена устаревшего изделия, просто введите артикул старого устройства VLT®, и конфигуратор привода выведет подробную информацию об аналогичном изделии нового поколения.

Наконец, но не в последнюю очередь по степени важности, конфигуратор привода предоставляет быстрый доступ к информации о доступных запасных частях и принадлежностях как для изделий, выпускаемых в настоящее время, так и для изделий, снятых с производства

Обзор опций их положение в типкоде

Типоразмер	Поло- жение	D1h/ D2h	D3h/ D4h	D5h/ D7h	D6h/ D8h	D13	E1	E2	E9	F1 и F2	F3 и F4 со шкафом для опций	F8	F9 со шкафом для опций	F10, F12	F11, F13 со шкафом для опций	F18
Корпус с тыльным каналом из нержавеющей стали	4	•	•	•	•			•		•	•					
Экранирование токоведущих элементов питающей сети	4	•	•	•	•	•	•		•							•
Нагревательные приборы и термостат	4	•	•	•						•	•				•	•
Освещение шкафа с розеткой питания	4									•	•			•	•	•
RFI фильтры класса A1	5*												•		•	
Клеммы NAMUR	5**										•		•		•	
Датчик остаточного тока (RCD)	5*										•		•		•	•
Тормозной прерыватель (IGBTs)	6		•	•	•	•	•	•	•	•	•	•	•	•	•	•
Безопасный останов/ 6***	6	•	•	•		•	•	•	•	•	•	•	•		•	•
Клеммы рекуперации	6															
Аварийная остановка IEC с реле безопасности Pilz	6*										•					•
Безопасный останов с реле безопасности Pilz	6									•	•	•	•	•	•	•
Без панели оператора	7	•	•	•												
LCP 101 цифровая панель оператора	7	•	•	•	•		•	•								
LCP 102 графическая панель оператора	7	•	•	•	•	•	•	•	•	•	•	•	•		•	•
Предохранители	9										•		•			
Клеммы распределения нагрузки	9		•	•	•	•	•	•	•	•	•					•
Предохранители и клеммы распределения нагрузки	9		•			•	•	•	•	•	•					•
Разъединитель	9****														•	
Автоматические выключатели	9****				•						•					•
Контакторы	9****										_					
Ручные пускатели двигателей	10									•	•				•	•
Клеммы 30 A с защитой предохранителями	10									•	•				•	•
Источник питания постоянного тока 24 В	11									•	•			•	•	•
Источник питания постоянного тока 24 В	11									-	•				•	•
Панель доступа к радиатору	11	•	•	•	•											

- Требуется шкаф для опций
 Доступно только для VLT® Automation Drive FC 302
 Стандартно для VLT Automation Drive FC302, опция для VLT HVAC Drive FC102 и AQUA Drive FC202
 Опции поставляются с предохранителями для типоразмера D.

Дополнительные акссесуары

для вашего применения

Доступно на типоразмерах

D1h D2h D3h D4h D5h D6h D7h D8h E1

Вывод USB на дверь

Монтажный комплект для вывода USB разъема позволяет подключать компьютер к приводу, не открывая шкаф. Данная опция доступна только для новых типоразмеров. В таблице указаны типоразмеры для которых доступна данная опция.

IP 20/IP 21/IP 54	IP 21/IP 54	IP 21/IP 54
D1h, D2h, D3h, D4h,	F1	F
D5h, D6h, D7h, D8h	L!	(Все типоразмеры)

F

Комплект для ввода кабелей двигателя через верхнюю часть шкафа типоразмера F

Для использования этого комплекта необходимо заказывать преобразователь стандартными клеммами для двигателя. В комплект входит все необходимое для монтажа через верх шкафа двигательной части (справа) типоразмера F.

Кабели	Типоразмер	Ширина шкафа	Код для заказа	
Двигатель	F1/F3	400 мм	176F1838	
Двигатель	F1/F3	600 мм	176F1839	
Двигатель	F2/F4	400 мм	176F1840	
Двигатель	F2/F4	600 мм	176F1841	
Двигатель	F8, F9, F10, F11, F12, F13	обращайтес	ь к производителю	

F

Комплект для ввода кабелей питания через верхнюю часть шкафа типоразмера F

В комплект входит все необходимое для монтажа через верх шкафа сетевой части (слева) типоразмера F.

Кабели	Типоразмер	Ширина шкафа	Код для заказа	
Сеть	F1/F2	400 мм	176F1832	
Сеть	F1/F2	600 мм	176F1833	
Сеть	F3/F4 с разъединителем	400 мм	176F1834	
Сеть	F3/F4 с разъединителем	600 мм	176F1835	
Сеть	F3/F4 без разъединителя	400 мм	176F1836	
Сеть	F3/F4 без разъединителя	600 мм	176F1837	
Сеть	F8, F9, F10, F11, F12, F13	обращайтес	ь к производителю	

F1/F3 F2/F4

Стандартные клеммы для двигателя

Стандартные разъемы для двигателя обспечивают соединительную шину и аппаратную часть необходимую для подключения клем двигателя от параллельных инверторов к отдельной клемме (на одну фазу). Они также необходимы для комплекта ввода кабелей через верхнюю часть шкафа. Этот комплект эквивалентен опции такой же опции. Если ПЧ был уже с ней заказан с этой опцией тогда комплект не нужен.

Также данный комплект рекомендуется для соединения выхода ПЧ с фильтром или контактором.

Типоразмер	Код заказа
F1/F3	176F1845
F2/F4	176F1846

D1h/ D3h and D2h/ D4h

Переходная плита

Переходная плита используется для замены «старого» типоразмера D на новый используя ту же самую компоновку.

Код заказа	Описание
176F3409	D1h/D3h переходная плита для замены типоразмера D1/D3
176F3410	D2h/D4h переходная плита для замены типоразмера D2/D4

D3h D4h

Комплект для вентиляции через тыльный канал

Данные комплекты необходимы для модернизации типоразмеров D и E. Они предлагаются в двух исполнениях – с

вентиляцией через верх и низ и только через верх. Комплекты доступны для типоразмеров D3h, D4h и E2.

	Верх и низ		
Код заказа	Описание	Код инструкции	Доп. документы/чертежи
176F3627	D3h 1800 мм	177R0456	
176F3628	D4h 1800	177R0457	
176F3629	D3h 2000	177R0456	
176F3630	D4h 2000	177R0457	
176F1850	E2 2000		
176F0299	E2 2200		
только верх			
176F1776	типоразмер Е2		175R1037

NEMA-3R Rittal и сварные исполнения

Эти комплекты предназначены для увеличения степени защиты приводов от IP00/Ip20/Шасси до NEMA-3R или NEMA-4.

Данные уровни защиты предназначены для использования снаружи помещения

NEMA-3R (сварные исполнения)				
Код заказа	Описание	Код инструкции	Доп.документы/чертежи	
176F3521 D3h охлаждение через тыльный канал (сзади и снизу)		177R0460		
176F3526	D4h охлаждение через тыльный канал (сзади и снизу)	177R0461		
176F0298	Е2 комплект	175R1068	175R1069	
NEMA-3R (Rittal исполнения)				
176F3633	D3h охлаждение через тыльный канал (сзади и снизу)	177R0460		
176F3634	D4h охлаждение через тыльный канал (сзади и снизу)	177R0461		
176F1852	Е2 комплект	175R5922	175R5921	

Охлаждение через тыльный канал для корпусов не Rittal

Данный комплект предназначен для приводов IP20/Шасси исполнения не Rittal для охлаждения в нижней и задней части. Комплект не включает в себя платы для монтажа.

Код заказа	Доступно для типоразмеров	Чертеж/ инструкция	Код заказа	Доступно для типоразмеров	Чертеж/ инструкция
176F3519	D3h	177R0454	176F3520	D3h	177R0454
176F3524	D4h	177R0455	176F3525	D4h	177R0455

Охлаждение через тыльный канал - через нижнюю и заднюю часть привода

Комплект для направления потока воздуха в тыльном канале в нижнюю и заднюю часть.

Нержавеющая сталь

Код заказа	Доступно для типоразмеров	Чертеж/ инструкция
176F3522	D1h/D3h	177R0506
176F3527	D2h/D4h	177R0507

Код заказа	Доступно для типоразмеров	Чертеж/ инструкция
176F3523	D1h/D3h	177R0506
176f3528	D2h/D4h	177R0507

D3h D4h

D1h/ D3h и D2h/ D4h

Дополнительные акссесуары

для вашего применения

Доступно на типоразмерах

D1h D2h D3h D4h

D5h D6h D7h D8h E

Охлаждение через тыльный канал — через заднюю часть привода

Данный комплект используется для направления воздуха. По умолчанию в канале воздух заходит снизу и выводится наверх. Данный комплект перенаправляет воздух на заднюю часть привода.

Охлаждение через тыльный канал – через заднюю часть привода

	Охлаждение через тыльный канал – через заднюю часть приводе				
Код заказ		Доступно для типоразмеров	Чертеж/ инструкция		
	176F3648	охлаждение через заднюю часть привода, D1h	177R0458		
	176F3649	охлаждение через заднюю часть привода, D2h	177R0459		
	176F3625	охлаждение через заднюю часть привода, D3h	177R0454		
	176F3626	охлаждение через заднюю часть привода, D4h	177R0455		
	176F3530	D5h/D6h	177R0505		
	176F3531	D7h/D8h	177R0504		

Защитные накладки и нерабочие обкладки

Защитные накладки и нерабочие обкладки	Код заказа	Доступно для типо- размеров	Чертеж/ инструкция
IP 00 (сварные исполнения)	176F1861	E2	175R1106
IP 21/54	176F1946	E1	175R1106
IP 00 (Rittal исполнения)	176F1783	E1	177R0076

Нержавеющая сталь

	Код заказа	Доступно для типоразмеров	Чертеж/ инструкция
	176F3656	D1h SS (установка на стену)	177R0458
176F3657	D2h SS (установка на стену)	177R0459	
	176F3654	D3h SS (установка в шкафу)	117R0454
	176F3655	D4h SS (установка в шкафу)	117R0455

Пьедестал с охлаждение через тыльный канал через заднюю часть

Код заказа	Описание	Доп.документы/чертежи
176F3532	D1h 400 мм	177R0508
176F3533	D2h 400 мм	177R0509

חוט	
D2h	
D5h	
D6h	
D7h	
D8h	
E1	
E2	

D1h D2h

Пьедестал

Данный комплект представляет собой пьедестал высотой 400 мм для типоразмеров D1h и D2h и высотой 200 мм для типоразмеров D5h и D6h. Он позволяет осуществлять напольный монтаж преобразователей. Передняя часть пьедестала имеет полость для входа воздуха для охлаждения силовых компонентов.

Код заказа	Описание	Доп.документы/чертежи
176F3631	D1h 400 мм	177R0452
176F3632	D2h 400 мм	177R0453
176F3452	D5h/D6h 200 мм	177R0500
176F3539	D7h/D8h 200 мм	
176F6739	Типоразмер Е	

Комплект для монтажа опций

Данный комплект доступен для типоразмеров D и E. С его помощью можно добавлять предохранители, разъеди-

нители, фильтры ЭМС. Заказные коды можно уточнить у производителя.

E2

Набор для модернизации до IP20

Данный комплект используется для типоразмера E2 (IP00). После установки привод будет иметь степень защиты IP20.

Типоразмер	Код заказа	Высота крышки клемной коробки
E2	176F1884	254 мм (10 дюймов)
EZ	170F1884	254 мм (10 дюимов)

Вход сигнальных кабелей сверху

Данный комплект позволяет проводить монтаж сигнальных кабелей через верхнюю часть привода. Комплект имеет степень защиты IP20. Если необходимо увеличить степень защиты необходимо использовать другой ответный коннектор.

Код зака	3a
176F174	2

Опции для приводов VLT® High Power Drive для вашего применения

для вашего примен	тепил			
			Устанавливается на типоразмерах	Место в типкоде
	Корпус шасси/IP 00 с воздушным кана Для повышения защищенности от коррозии в а казать в корпусе, который включает воздушны антикорроционным покрытием и специальный Такое исполнение рекомендуется для насыщен	агрессивных средах блоки IP 00 можно за- й канал из нержавеющей стали, радиаторы с и́ вентилятор.	D E2 F1-F4 F8-F13	4
	Экранирование токоведущих элемен Экран LexanR перед клеммами ввода питания и ного касания при открытой дверце корпуса.		D1h D2h D5h D6h D7h D8h E1	4
	Нагревательные приборы и термоста Нагревательные приборы устанавливаются вну ми термостатами в целях поддержания требуев вает срок службы компонентов привода во вла По умолчанию термостат включает нагревател 15,6 С.	утри корпуса F и регулируются автоматическимой влажности внутри устройств, что продлежных условиях.	D1h D2h D5h D6h D7h D8h F	4
	Освещение шкафа с розеткой питания Осветительное устройство может устанавливат освещенность при обслуживании и ремонте. Ц ного подключения переносных компьютеров и 230 В, 50 Гц, 2,5 А, СЕ/ENEC ■ 120 В, 60 Гц, 5 А, UL/cUL	гься внутри шкафа в корпусах F, оно повышает епь освещения включает розетку для времен-	F	4
	Фильтры высокочастотных помех Фильтры ВЧ-помех класса А2 встроены по умолчанию в приводы VLT. При необходимости дополнительная степень защиты от помех ВЧ/ЭМС обеспечивается дополнительными ВЧ-фильтрами А1, которые подавляют ВЧ помехи и электромагнитное излучение	согласно требованиям EN 55011. В приводах типоразмера F для RFI-фильтра класса A1 необходим дополнительный шкаф для опций. ВЧ фильтры предлагаются также для установки на судах.	DE F3 F4	5

Опции для приводов VLT® High Power Drive

для вашего применения

Иесто в типкоде

Устанавливается на типоразмерах

F

Клеммы NAMUR

NAMUR- это международная ассоциация пользователей средств автоматики в обрабатывающей промышленности, главным образом в химической и фармацевтической отраслях в Германии.

Выбор такого варианта обеспечивает стандартное подключение клемм и сопутствую-

щие функции согласно требованиям NAMUR NE37. Требует выбора дополнительной платы расширения релейных выходов МСВ 113 и платы термистора МСВ 112 РТС.

Доступно только для FC 302 − VLT® AutomationDrive.

_

Датчик остаточного тока (RCD)

Использует балансовый метод для контроля токов утечки на землю в высокорезистивных заземлённых системах (TN и TT системах по терминологии IEC). Имеются две уставки: предупреждение (50% от аварийной уставки) и авария. С каждой уставкой связано SPDP реле для внешнего использования. Требуется внешний токовый трансформатор с проёмом для первичной цепи (поставляемый и устанавливаемый заказчиком)

- интегрирован с цепью безопасного останова привода
- устройство IEC 60755 типа В контролирует пульсирующие DC-токи и чистые DC-токи утечки на землю
- LED столбиковый индикатор токов утечки от 10 до 100% уставки
- кнопка TEST/RESET

F3 F4

Контроль сопротивления изоляции (IRM)

Контролирует сопротивление изоляции в незаземлённых системах (ІТ по терминологии ІЕС) между фазами и землёй. Есть две уставки для уровня сопротивления изоляции: предупреждение и авария. С каждой уставкой связано SPDP реле для внешнего использования. Замечание: только одно устройство контроля сопротивления

изоляции может быть подключено к каждой (IT) системе.

- интегрирован с цепью безопасного останова привода
- LCD дисплей для индикации величины сопротивления изоляции
- память ошибок
- кнопки INFO, TEST и RESET

Ę

Безопасный останов с реле безопасности Pilz

Опция доступна для типоразмера F. Позволяет устанавливать реле Pilz без отдельного шкафа. Реле используется в опции мониторинга внешней температуры. Если требуется мониторинг РТС, тогда должна быть заказана опция термистора МСВ 112 РТС.

6

F1-F4

Аварийная остановка IEC с реле безопасности Pilz

Включает резервированную 4-проводную кнопку аварийного останова, которая находится на передней панели корпуса корпуса и реле Pilz, которое контролирует ее вместе

с цепью безопасного останова привода и положением контактора. Необходим опциональный шкаф типоразмера F для опций с контактором.

Тормозной прерыватель (IGBTs)

Клеммы тормоза с цепью тормозного прерывателя IGBT позволяют подключать внешние тормозные резисторы. Подробные сведения о тормозных резисторах изложены на стр. 46-47.

Клеммы рекуперации

Позволяют подключение блоков рекуперации к шине постоянного тока на стороне блока конденсаторов реакторов постоянного тока для динамического торможения. Клеммы рекуперации типоразмера F рассчитаны приблизительно на . номинальной мощности привода. Консультацию по предельным значениям рекуперации мощности для конкретного типоразмера и напряжения привода можно получить у изготовителя.

Клеммы распределения нагрузки

Эти клеммы подключены к шине постоянного тока на стороне выпрямителя реактора постоянного тока и обеспечивают распределение мощности от шины постоянного тока между различными приводами. Клеммы разделения нагрузки типоразмера F расчитаны

приблизительно на 1/3 номинальной мощности привода. Консультацию по предельным значениям разделения нагрузки для конкретного типоразмера и напряжения привода можно получить у изготовителя.

Предохранители

Предохранители настоятельно рекомендуются для быстросрабатывающей защиты при перегрузке по току в частотнорегулируемом приводе. Предохранители снижают степень повреждений привода и сводят к минимуму время обслуживания в случае отказа. Обязательны в применениях для судов.

Разъединитель

Рукоятка на дверце приводит в действие разъединитель на включение и выключение питания для более безопасных условий во время обслуживания. Разъединитель сблокирован с дверцами шкафа и предотвращает их открытие, пока подается питание.

Автоматический выключатель можно отключать дистанционно, однако возвращать в исходное положение нужно вручную. Автоматические выключатели сблокированы с дверцами шкафа и предотвращают их

открытие, пока подается питание. Если автоматический выключатель заказан как опция, к быстродействующей защите частотнорегулируемого привода от перегрузки по току прилагаются также и предохранители.

F

Опции для приводов VLT® High Power Drive

для вашего применения

Место в типкоде Устанавливается на типоразмерах

F

Контакторы

Контактор с электрическим управлением обеспечивает дистанционное включение и выключение подачи питания на привод. Если дополнительно заказывается устройство

аварийного останова IEC, предохранительное устройство Pilz контролирует вспомогательный контакт на контакторе.

F

Ручные пускатели двигателей

Подает 3-фазное питание на электродвигатели принудительной вентиляции, которые часто используются для мощных двигателей. Питание для пускателей подается со стороны нагрузки любого поставляемого контактора, автоматического выключателя или разъединителя и со стороны входа ВЧ фильтра класса 1 (если дополнительно заказан фильтр ВЧ). Перед пускателем каждого двигателя имеется предохранитель, питание отключено, если

питание, подаваемое на привод, отключено. Допускается до двух пускателей (один, если заказана цепь на 30 A с защитой предохранителями). Включены в цепь безопасного останова привода.

Конструктивными элементами блока являются:

- Пускатель (вкл/выкл)
- Цепь защиты от К3 и перегрузок с функцией контроля
- Функция ручного сброса.

F3 F4

Клеммы 30 А с защитой предохранителями

- 3-фазное питание, соответствующее напряжению сети, для подключения вспомогательного оборудования заказчика
- Не предусмотрено, если заказаны два ручных пускателя двигателей
- Напряжение на клеммах отсутствует, если подача питания на привод отключена

■ Питание на клеммы с предохранителями подается со стороны нагрузки любого поставляемого контактора, автоматического выключателя или разъединителя и со стороны входа ВЧ фильтра класса 1 (если дополнительно заказан фильтр ВЧ).

F

Источник питания постоянного тока 24 В

- 5 A, 120 BT, = 24 B
- Защита от выходных сверхтоков, перегрузки, КЗ и перегрева
- Для подачи питания на вспомогательные устройства заказчика (напр., датчики, входы/выходы контроллеров, температур-
- ные зонды, индикаторные лампочки и/или иные электронные средства)
- Для диагностики предусматриваются сухой контакт контроля постоянного тока, зеленый светодиод контроля постоянного тока и красный светодиод перегрузки

5 F1-F4

Контроль внешней температуры

Предназначен для контроля температур узлов внешних систем (например, обмоток двигателя и/или подшипников). Включает 8 универсальных входных модулей и два специализированных входных термисторных модуля. Все 10 модулей могут включаться в цепь безопасного останова привода и контролироваться по коммуникационной шине (для этого требуется закупка отдельного блока сопряжения модуль/шина).

Универсальные входы (8)

Типы сигнала:

- Входы для терморезистивных датчиков (включая Pt100), 3-х или 4-х проводные
- Термопара
- Ток или напряжение

Дополнительные функции:

■ Один универсальный аналоговый выход,

настраиваемый на ток или напряжение

- Два выходных реле (НО)
- ЖК дисплей на две строки и светодиодная индикация диагностики
- Датчик обрыва фазы К3 и неверной полярности
- ПО настройки интерфейса

Специализированные входы для термисторов (2) Возможности:

- Каждый модуль может отслеживать до 6 термисторов
- Диагностика отказов при разрыве проводов или КЗ проводников датчиков
- Сертификация ATEX/UL/CSA
- При необходимости дополнительная плата MCB 112 термистора РТС может обеспечить третий вход для термистора

Графическая панель местного управления LCP102

- Поддерживает русский язык
- Быстрое меню для упрощения ввода в эксплуатацию.
- Полное сохранение параметров и функция копирования
- Регистрация аварийных сигналов
- Кнопка Info поясняет предназначение выбранного пункта на дисплее
- Пуск/остановка вручную или выбор автоматического режима
- Функция сброса
- Отображение графика переходного про-

Цифровая панель местного управления LCP101

- Сообщения о состоянии
- Быстрое меню для упрощения ввода в эксплуатацию.
- Настройка и регулировка параметров
- Пуск/остановка вручную или выбор

автоматического режима

■ Функция сброса

Комплект для монтажа панели местного управления LCP

- Корпус класса защиты IP 65
- Кабель длиной 3 м.
- Винты для затяжки пальцами для простоты сборки
- Могут применяться с LCP101 или LCP 102
- Номер для заказа: 130В1117

MCA 101 PROFIBUS

- PROFIBUS DP V1 поддерживается оборудованием большинства поставщиков ПЛК и обеспечивает высокую степень совместимости со следующими версиями.
- Быстрота и эффективность связи, простота установки, полная диагностика и автоконфигурация данных процесса посредством файлов GSD
- Ациклическая параметризация с помощью протоколов обмена данными PROFIBUS DP V1, PROFIdrive или Danfoss FC, PROFIBUS DP V1, Master Class 1 и 2

Коды для заказа 130В1100 без покрытия – 130B1200

с покрытием (Класс G3/ISA S71.04-1985)

MCA 104, DeviceNet

- DeviceNet основывается на технологиях "производитель-потребитель" и обеспечивает надежную и качественную обработку данных.
- Позволяет пользователю выбирать характер и синхронизацию полученных данных
- Строгая политика проверки совместимости ODVA's гарантируют интероперабельность изделий

Коды для заказа 130В1102 без покрытия -130B1202

с покрытием (Класс G3/ISA S71.04-1985)

MCA 105 CanOpen

Интерфейс шины CanOpen включает систему шины CAN и DeviceNet.

- Прикладной уровень CANOpen соответствует DS301
- Поддержка Device Profi le DSP402 для

приводов и управления движением

■ Скорость передачи 10–1000 Кбод и адресная память объемом 0-127

Сетевая шина

Сетевая шина

Сетевая шина

Сетевая шина

Опции для приводов VLT High Power Drive

для вашего применения

MCA-108 LonWorks

Предназначено для связи привода в сети LonWorks Free Topology.

- Сертифицировано на соответствие техническим условиям LonWorks 3.4
- Предназначено для связи с любой системой, отвечающей стандарту FTT и 78 Кбит/c LonWorks

■ Оснащено двумя терминальными резисторами.

Коды для заказа 130В1106 без покрытия — 130В1206 с покрытием (Класс G3/ISA S71.04-1985)

MCA-109 BACNet

Позволяет приводу поддерживать связь с системой диспетчеризации инженерного оборудования здания по сети BACnet, протокол открытой архитектуры связи, являющийся мировым стандартом для диспетчеризации инженерных систем здания

- Международный стандарт ISO 16484-5
- Протокол можно использовать в системах автоматизации инженерных сетей зданий любого размера без лицензион-

ной платы

■ Легко интегрируется в существующие системы средств управления

Коды для заказа 130В11446 без покрытия — 130В1244 с покрытием (Класс G3/ISA S71.04-1985)

Плата преобразовывания команд для VLT 3000 по протоколу Profibus VLT MCA 113

Плата представляет собой специальную версию сетевых шин Profibus, которая моделирует команды VLT 3000 в приводе Automation Drive. Это позволяет делать замену привода без изменения доргостоящей программы для ПЛК.

Для модернизации различного сетевого интерфейса установленная плата легко из-

влекается и заменяется новой опцией. Это гарантирует безопасность инвестиций без потери гибкости.

Доступна только как отдельная опция.

Коды для заказа 130В1245 – с покрытием (Класс G3/ISA S71.04-1985)

Плата преобразовывания команд для VLT 3000 по протоколу Profibus VLT MCA 113

Плата представляет собой специальную версию сетевых шин Profibus, которая моделирует команды VLT 5000 в приводе Automation Drive. Это позволяет делать замену привода без изменения доргостоящей программы для ПЛК.

Для модернизации различного сетевого интерфейса установленная плата легко извлекается и заменяется новой опцией. Это гарантирует безопасность инвестиций без

потери гибкости. Данная опция поддерживает DVP1.

Доступна только как отдельная опция.

Коды для заказа 130В1246 – с покрытием (Класс G3/ISA S71.04-1985).

Место в типкоде

Сетевая шина

Сетевая шина

Сетевая шина

Применение

15

Применение

Опция VLT PROFINET позволяет подключаться к сетям, работающим по протоколу PROFINET.

- Встроенный вебсервер для удаленной диагностики и считывания основных параметров привода.
- Служба почтового оповещения может быть настроена для отправки сообщений по электронной почте на одно или несколько принимающих устройств

в случае поступления определенных предупреждений и аварийных сигналов или восстановления работы системы.

- TCP/IP для доступа к приводу через MCT10.
- FTP загрузка и передача файлов.
- Поддержка DCP (протокол обнаружения и настройки).

MCA 121 Ethernet/IP

Обеспечивает сетевые средства для развертывания типовой технологии Ethernet на производстве, соединяя предприятие с интернетом.

- Встроенный улучшенный коммутатор с функциями диагностики и двумя портами для линейной топологии
- Встроенный web сервер и E-mail клиент для оповещения об обслуживании.

Modbus TCP MCA 122

Опция VLT Modbus TCP позволяет подключаться к сетям, работающим по протоколу Modbud TCP, например построенным на основе ПЛК Schneider.

- Встроенный вебсервер для удаленной диагностики и считывания основных параметров привода
- Служба почтового оповещения может быть настроена для отправки сообщений по электронной почте на одно или несколько принимающих устройств
- в случае поступления определенных предупреждений и аварийных сигналов или восстановления работы системы.
- Два порта Ethenet со встроенным переключателем.
- FTP загрузка и передача файлов.
- Автоматическая настройка IP адреса.

Ввод/вывод общего назначения МСВ-101

Обеспечивает расширение входов и выходов:

- 3 дискретных ввода 0 24 В: Логический '0' < 5 В; логический '1' > 10 В
- 2 аналоговых ввода 0 10 В: Разрешение 10 бит + знак
- 2 дискретных выхода NPN/PNP по двухтактной схеме

■ 1 аналоговый вывод 0/4 — 20 мА.

Коды для заказа 130В1125 без покрытия — 130В1212 с покрытием (Класс G3/ISA S71.04-1985)

Для подключения сигнала обратной связи энкодера от двигателя или технологического процесса. Обратная

связь для асинхронных двигателей с управлением вектором потока или бесщеточных сервоприводов с

постоянными магнитами.

• Икрементальные энкодеры

- Синусно-косинусные энкодеры с HyperfaceR
- Подача питания для энкодеров
- Интерфейс EIA-422.

Коды для заказа 130В1115 без покрытия — 130В1203 с покрытием (Класс G3/ISA S71.04-1985)

Опции для приводов VLT® High Power Drive

для вашего применения

Место в типкоде

15

Применение

15

Применение

Применение

Резольвер МСВ 103

Для подключения сигнала обратной связи от резольвера от асинхронных двигателей с управлением вектором потока или бесщеточных сервоприводов с постоянным магнитом.

- Первичное напряжение: 4–8 В (действ. знач.);
- Частота первичной обмотки: 2,5 кГц–15
- Ток первичной обмотки, макс.: 50 мА (эфф.);
- Напряжение вторичной обмотки: 4 В (действ. знач.);
- Разрешение: 10 бит при 4 В (действ. знач.) амплитуды входного напряжения.

Коды для заказа 130В1127 без покрытия — 130B1227 с покрытием (Класс G3/ISA S71.04-1985).

Реле МСВ 105

Обеспечивает три дополнительных релейных выхода.

Макс. нагрузка на клеммах/Мин. нагрузка на клеммах:

- АС-1 Резистивная нагрузка ~240 В: 2А/=5 В:
- АС-15 Индуктивная нагрузка/Макс. частота коммутации при при @ cos ф 0,4: 0,2 А номинальной нагрузке/мин. нагрузке: 6 мин-1/20 с-1
- DC-1 Резистивная нагрузка ~240 B: 1A
- DC-13 Индуктивная нагрузка при @ cos ф 0,4: 0,1A

Коды для заказа 130В1110 без покрытия — 130B1210 с покрытием (Класс G3/ISA S71.04-1985)

Трименение

МСВ 108 интерфейс ПЛК повышенной надежности

Как рентабельный способ обеспечения безопасности, интерфейс ПЛК повышенной надежности обеспечивает связь безопасной 2-х проводной линии между Safe PLC и однополюсным 24 VDC входом на приводе.

Интерфейс ПЛК повышенной надежности позволяет ПЛК прервать работу по плюсовому или минусовому проводу без вмешательства со стороны Safe PLC.

МСВ 109 Аналоговый вход/выход и резервное питание для часов реального времени

Обеспечивает дополнительные аналоговые входы и выходы и позволяет подключать внешний источник постоянного тока для поддержания работы часов реального времени при отключении сетевого питания.

- 3 аналоговых входа
- 3 аналоговых выхода
- Резервное питание для часов реального времени

Срок службы батареи при нормальных условиях — 10 лет.

Коды для заказа 130В1143 без покрытия — 130B1243 с покрытием (Класс G3/ISA S71.04-1985)

Контролирует температуру двигателя через подключенный термистор(ы) РТС и обеспечивает защиту при тепловых перегрузках двигателя.

- Подключение и контроль датчиков РТС в соответствии с требованиями DIN 44081 и DIN
- Способен контролировать до 6 термисторов
- Регистрация аварийных сигналов, выявление КЗ проводов датчиков и обнаружение разрыва проводов датчиков
- Объединяется с функцией безопасного останова привода, как того требует EN 954-1 для изделий категории 3.
- Сертифицировано АТЕХ

Место в типкоде

Применение

Применение

VLT® Плата входов датчиков МСВ 114

Эта опция обеспечивает защиту электродвигателя от перегрева путем контроля температуры подшипников и обмоток в двигателе. Пределы, а также действие регулируются, а показания температуры отдельных датчиков выводятся на дисплей или передаются по сетевому протоколу.

- Защита электродвигателя от перегрева
- Три входа датчиков с автоматическим обнаружением для подключения 2- или 3-проводных датчиков РТ100/РТ1000
- Один дополнительный аналоговый вход 4-20 мА.

МСО 101, расширенное каскадное управление

Расширяет возможности стандартного каскадного управления, заложенного в приводы серии VLT

- Обеспечивает 3 дополнительных реле для подключения дополнительных двигателей
- Обеспечивает точность управления расходом, давлением и уровнем для максимальной эффективности систем, в которых применены несколько насосов или вентиляторов
- Режим "ведущий/ведомый" обеспечивает работу всех вентиляторов/насосов на одной скорости, что, по расчетам, снижает энергопотребление почти наполовину в сравнении с дросселированием или традиционным способом вкл/выкл.
- Чередование ведущего насоса приводит к равномерному использованию насосов или вентиляторов.

МСО 305 Программируемый контроллер движения

Свободно программируемый контроллер движения. Предназначен для реализации задач синхронизации, позиционирования, электронного кулачка. Обладает функциональностью PLC и способен осуществлять мониторинг и обработку событий и аварийных ситуаций. Программирование осуществляется с помощью программного кода на языке высокого уровня.

- 2 входа, поддерживающие инкрементные и абсолютный энкодеры
- 1 выход энкодера (виртуальный мастер)
- 10 цифровых входов, 8 цифровых выходов
- Связь через интерфейс шины (необходима коммуникационная опция)
- Программный пакет для ввода в эксплуатацию.

МСО 350, контроллер синхронизации

Запрограммирован на заводе-изготовителе для задач синхронизации.

- 2 входа, поддерживающие инкрементные и абсолютный энкодеры
- 1 выход энкодера виртуальный мастер
- 10 цифровых входов
- 8 цифровых выходов
- Связь через интерфейс шины (требуется коммуникационная опция).

Управление движением

Управление движением

МСО 351, контроллер позиционирования

Запрограммирован на заводе-изготовителе для задач позиционирования.

- 2 входа, поддерживающие инкрементный и абсолютный энкодеры
- 1 выход энкодера виртуальный мастер
- 10 цифровых входов
- 8 цифровых выходов

■ Связь через интерфейс шины (требуется коммуникационная опция)

Опции для приводов VLT® High Power Drive

для вашего применения

Место в типкоде

16 и 18 Управление движением

Расширение релейных

17

17

Расширение релейных входов

Применение

Плата центральной намотки МСО 352

При помощи управления намоткой по замкнутому контуру материал всегда равномерно укладывается вне зависимости от скорости.

- Следует за линейной скоростью.
- Настройка намотки в зависимости от диаметра.

■ Настройка натяжения при помощи PID регулятора.

Коды для заказа 130В1165 без покрытия — 130В1265 с покрытием (Класс G3/ISA S71.04-1985)

МСВ 113 Плата расширения релейных выходов

Расширяет возможности стандартного каскадного управления, заложенного в приводы серии VLT

- 7 дискретных входов
- 2 аналоговых выхода
- 4 реле SPDT (однополюсные на два направления)

■ Соответствует рекомендациям NAMUR

Гальваническая развязка.

Коды для заказа 130В1164 без покрытия — 130В1264 с покрытием (Класс G3/ISA S71.04-1985)

МСО 102, усовершенствованный каскадный контроллер

- Обеспечивает 8 дополнительных реле для подключения дополнительных двигателей
- Обеспечивает точность управления расходом, давлением и уровнем для максимальной эффективности систем, в которых применены несколько насосов или вентиляторов
- Режим "ведущий/ведомый" обеспечивает работу всех вентиляторов/насосов на
- одной скорости, что, по расчетам, снижает энергопотребление почти наполовину в сравнении с дросселированием или традиционным способом чередования вкл/выкл в сети.
- Чередование ведущего агрегата приводит к равномерному использованию нескольких насосов или вентиляторов

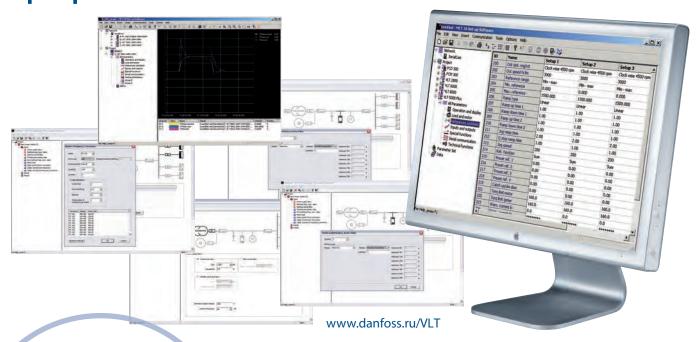
MCB 107 — резервный источник = 24B

Дает возможность подключения внешнего источника постоянного тока для поддержания работы платы управления, LCP и других опций в активном режиме при прекращении питания от сети.

- Диапазон напряжения на входе: =24 В +/-15% (макс. 37 В за 10 с)
- Макс. входной ток: 2,2 A
- Макс. длина кабеля: 75 м
- Емкость нагрузки на входе: < 10 нФ</p>
- Задержка при подаче питания: < 0,6 c

- легко устанавливать в преобразователь частоты на работающем оборудовании
- Обеспечивает питание управляющей платы и опции при пропадании питания
- Позволяет работать сетевым интерфейсам при пропадании питания

Коды для заказа 130В1108 без покрытия — 130В1208 с покрытием (Класс G3/ISA S71.04-1985)


Данный переходник позволяет устанавливать опции A и B в слот C.

- Работа с двумя опциями В
- Работа с опциями А и В (при этом в слот А должен быть свободным)
- Ограничения, заключающие в том, что привод может работать только с одной сетевой шиной, не может работать с несколькими одинаковыми опциями.
- Платы Реле МСВ 105 и Термистора МСВ 112 не поддерживаются адаптером и должны устанавливаться только в слот В.

Код для заказа 130В1130 без покрытия — 130В1230 с покрытием (Класс G3/ISA S71.04-1985).

В зависимости от типа шкафа для установки данной платы могут понадобиться дополнительные опции. Для уточнения свяжитесь с представителями «Данфосс».

Акссесуары для приводов VLT® High Power Drive Программное обеспечение

Идеальный

инструмент для:

- Ввод в эксплуатацию
- Сервисное обслуживание
- Программирование
- Моделирование различных применений
- Различные источники питания
- Индикация соответствия норм
- Проектная документация

Программа настройки VLT® МСТ10

VLT MCT 10 предлагает современные возможности программирования для всех приводов Danfoss, что существенно сокращает время на программирование и настройки. Проектноориентированный программный пакет имеет стандартный интуитивнопонятный интерфейс. Настройки параметров для каждого привода хранятся в одном файле, что позволяет легко копировать наборы параметров с привода на привод. В папках проекта могут также храниться определенные пользователем файлы, например, PDF, чертежи CAD или документы Word.

Это единый инструмент ПК для всех задач программирования привода.

VLT MCT-10 Basic (можно бесплатно скачать на сайте Danfoss) обеспечивает доступ к конечному количеству приводов с ограниченными возможностями.

Расширенную версию, предлагающую более высокий уровень функциональности, можно приобрести в отделе продаж компании Danfoss.

Особенностями VLT MCT 10 являются:

- Ввод в эксплуатацию в режимах Online и Off -line.
- Файлы оперативной справки для каждого параметра привода
- Регистрация аварийных сигналов и предупреждений
- Графические средства упрощенного программирования интеллектуального логического контроллера.
- Функция осциллографирования в реальном масштабе времени
- Конфигурация и доступ к буферу внутренних данных VLT AutomationDrive обеспечивает до 4 каналов скоростного (до 1 мс) сбора данных
- Программирование МСО.

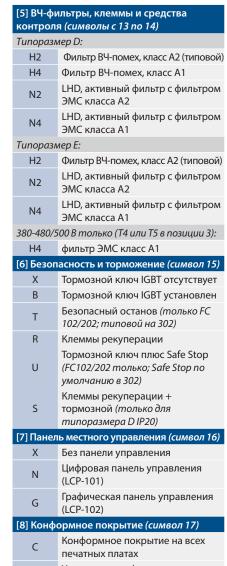
ПО расчета гармоник VLT® MCT 31

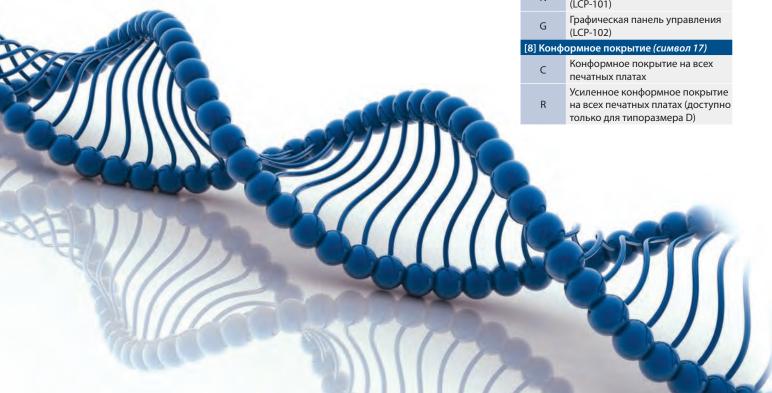
VLT MCT 31 вычисляет нелинейные искажения, вызванные преобразователями частоты, как производства компании Danfoss, так и других изготовителей. Она также может рассчитать эффект других дополнительных способов устранения искажений, включая фильтры гармоник Danfoss.

Имея VLT MCT 31, можно определить, возникнет ли проблема с гармониками на вашей установке, и если так, то какие самые целесообразные пути следует выбрать для решения этой проблемы.

Особенностями VLT MCT 31 являются:

- Вместо типоразмеров и полного сопротивления трансформатора, если неизвестны характеристики трансформатора, можно применить токовые характеристики КЗ.
- Ориентация проекта на упрощение расчетов по нескольким трансформаторам.
- Простота сравнения уровней гармоник в рамках одного проекта
- Поддерживает линейку действующих изделий Danfoss, а также устаревшие модели приводов.


Код заказа для типоразмеров D и E


[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

[4] Степень защиты (символы с 10 по 12)

[1] Прим	енение (символы с 1 по 3)
102	VLT® HVAC Drive
202	VLT® AQUA Drive
302	VLT® AutomationDrive
[2] Мощн	юсть <i>(символы с 4 по 7)</i>
N90K	90 кВт / 125 л.с.
N110	110 кВт / 150 л.с.
N132	132 кВт / 200 л.с.
N160	160 кВт / 250 л.с.
N200	200 кВт / 300 л.с.
N250	250 кВт / 350 л.с.
P250	250 кВт / 350 л.с.
N315	315 кВт / 450 л.с.
P315	315 кВт / 450 л.с.
P355	355 кВт / 500 л.с.
P400	400 кВт / 550 л.с.
P450	450 кВт / 600 л.с.
P500	500 кВт / 650 л.с.
P560	560 кВт / 750 л.с.
P630	630 кВт / 900 л.с.
	рразмеров D/E мощность в кВт
приведен	ıа для 400, 690B
	рразмеров D/E мощность в л.с.
	ıа для 460, 575B
	йное напряжение перем. тока
Т4	ы с 8 no 9) 3O ~380/480 B (исключая FC 302)
T5	30 ~380/500 В (только для FC 302)
15 T7	30 ~380/500 В (только для FC 302) 30 ~525/690 В
17	30 ~323/090 D

• •	TID Salement (camboner c 10 110 12)
Типоразл	лер D:
E20	ІР20/ Шасси
E21	IP21/тип 1
E54	IP54/тип 12
E2M	IP21/ тип 1 с сетевым экраном
E5M	IP54/ тип 12 с сетевым экраном
H21	IP21, тип 1 с подогревателем
H54	IP54/ тип 12 с подогревателем
C20	IP 20 / 304 тыльный канал из нержавеющей стали (только для типоразмера D3h и D4h)
Типоразл	лер Е1:
E21	IP21/NEMA 1
E54	IP54/NEMA 12
E2M	IP21/NEMA, тип 1 с сетевым экраном
E5M	IP54/NEMA, тип 12 с сетевым экраном
Типоразл	лер Е2:
E00	Е00 ІР00/Шасси
C00	IP00/Шасси с воздушным каналом из нержавеющей стали
	Harmonic Drive (LHD) типоразмеры:
E21	IP21/NEMA 1
E54	IP54/NEMA 12
E2M	IP21/NEMA, тип 1 с сетевым экраном
E5M	IP54/NEMA, тип 12 с сетевым экраном

15] Np	оименение (символ 28-2	_		
		FC	FC	FC
		302	202	102
BX	Нет опции			
	МСВ 109 Аналоговый			
	вход/выход и			
B0	резервное питание			
	для часов реального			
	времени			
B2	МСВ 112 РТС плата			
	термистора			
B4	МСВ 114 VLT® плата			
	входов датчиков			
BK	МСВ 101 Ввод/вывод			
	общего назначения			
BP	МСВ 105 плата			
00	расширения реле			
BR	МСВ 102 CL энкодер			
BU	МСВ 103 резольвер			
BY	МСО 101 расширенный			
	каскадный контроллер			
	МСВ 108 интерфейс	_		
BZ	ПЛК повышенной			
4 43 34	надежности	,		
16] Уп	равление движением (_	_	_
		FC	FC	FC
		202		
		302	202	
CX	Нет опции	302		
	MCO 305	302		
CX C4	МСО 305 Программируемый	302		
	мСО 305 Программируемый контроллер движения	302		
	МСО 305 Программируемый контроллер движения МСО 350 контролер	302		
C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации	302		
C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер	302		
C4 C4 C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования	•		
C4 C4 C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер	1 3 2)	202	102
C4 C4 C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования	•		1022 FC
C4 C4 C4	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования	32) FC	202 FC	102
C4 C4 C4 [17] Pa	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования сширение реле (символер)	32) FC	202 FC	1022 FC
C4 C4 C4 [17] Pa	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования сширение реле (символ	32) FC	202 FC	1022 FC
C4 C4 C4 T7] Pa	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования сширение реле (символеть опции МСВ 113 Плата	32) FC	202 FC	1022 FC
C4 C4 C4 T7] Pa	МСО 305 Программируемый контроллер движения МСО 350 контролер синхронизации МСО 351 Контроллер позиционирования сширение реле (символент опции МСВ 113 Плата расширения	32) FC	202 FC	1022 FC

	оограммное обеспечен ления движением <i>(сим</i>		3-34 <u>)</u>	
		FC 302	FC 202	FC 102
XX	Нет опции Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста	•	•	•
10	МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16)			
11	МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16)			
12	МСО 352 плата центральной намотки			
	езервное питание контр (символ 35-36)	ольн	юй	
карты	(CUMBON 33-30)	FC	FC	FC
		302	202	102
DX	Нет опции			
D0	MCB 107 резервный источник 24B			

Код заказа для типоразмера F

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

[1] Серия	я <i>(символ 1-3)</i>
102	VLT® HVAC Drive
202	VLT® AQUA Drive
302	VLT® AutomationDrive
[2] Мощ	ность (символ 4-7)
P450	450 кВт / 600 л.с.
P500	500 кВт / 650 л.с.
P560	560 кВт / 750 л.с.
P630	630 кВт / 900 л.с.
P710	710 кВт / 1000 л.с.
P800	800 кВт / 1200 л.с.
P900	900 кВт / 1250 л.с.
P1M0	1.0 МВт / 1350 л.с.
P1M2	1.2 МВт / 1600 л.с.
P1M4	1.4 МВт / 1900 л.с.
	оразмеров F мощность в кВт на для 400, 690В
Для mun	оразмеров F мощность в л.с.
приведен	на для 460, 575В
[3] Лине	йное напряжение (символ 8-9)
T4	Три фазы 380-480 В
T5	Три фазы 380-500 В
T7	Три фазы 525-690 В — 690 В

[4] Степе	ень защиты <i>(символы с 10 no 12)</i>
Типораз	
E21	IP 21 / Тип 1
E54	IP 54 / Тип 12
H21	IP 21 / Тип 1 с нагревателем и термостатом
H54	IP 54 / Тип 12 с нагревателем и термостатом
L2X	IP 21 / Тип 1 с освещением и розеткой 230B
L5X	IP 54 / Тип 12 с освещением и розеткой 230В
L2A	IP 21 / Тип 1 с освещением и розеткой 115В
L5A	IP 54 / Тип 12 с освещением и розеткой 115В
R2X	IP 21 / Тип 1 с нагревателем, термостатом, освещением и розеткой 230В
R5X	IP 54 / Тип 12 с нагревателем, термостатом, освещением и розеткой 230В
R2A	IP 21 / Тип 1 с нагревателем, термостатом, освещением и розеткой 115В
R5A	IP 54 / Тип 12 с нагревателем, термостатом, освещением и розеткой 115В
VLT® Low	Harmonic Drive (LHD) типоразмер F18.
E21	IP 21 / Тип 1
E54	IP 54 / Тип 12
[5] Филь	тр ЭМС, клеммы и опции ринга <i>(символ 13-14)</i>

F1, F2, F3 и F4 типоразмеры:

Н2 ЭМС фильтр класс А2

Automation Drive

HG

IRM для IT сетей с фильтром ЭМС класс

Клеммы NAMUR и фильтр ЭМС класс A2 (необходимы платы MCB 112 и MCB

113). Доступно только для FC302 VLT

[6] Без	опасность и торможение <i>(символ 15)</i>
Χ	Тормозной ключ отсутствует
В	Тормозной ключ установлен
R	Клеммы рекуперации
С	Безопасный останов с реле безопасности Pilz
D	Безопасный останов с реле безопасности Pilz и тормозным ключом
Е	Безопасный останов с реле безопасности Pilz и клеммами рекуперации
Т	Безопасный останов (только FC102/202, по умолчанию в FC302)
U	Тормозной ключ и безопасный останов (только для FC102/202, безопасный останов по умолчанию в FC302)
F3, F4,	F18 типоразмеры
М	Кнопка аварийной остановки (включая реле Pilz)
N	Кнопка аварийной остановки, тормозной ключ и тормозные клеммы (включая реле безопасности Pilz)
Р	Кнопка аварийной остановки и клеммы рекуперации (включая реле безопасности Pilz)
[7] Пан	ель оператора <i>(символ 16)</i>
G	Графическая панель оператора <i>(LCP-102)</i>
[8] Пон	крытие плат <i>(символ 17)</i>
C	С покрытием
[9] Bxo	дные опции (<i>символ 18)</i>
All fran	nes:
X	Нет опции
7	Предохранители
	F9, F11, F13, и F18 типоразмеры:
3	Разъединители предохранители
5	Разъединитель, предохранители, клеммы разделения нагрузки (не доступно для типоразмера F18)
Α	Предохранители и клеммы разделения нагрузки
D	Клеммы разделения нагрузки
Е	Разъединитель, контактор и предохранители
F	Автоматический выключатель, контактор и предохранители
G	Разъединитель, контактор, клеммы разделения нагрузки и предохранители
Н	Автоматический выключатель, контактор, клеммы разделения нагрузки и предохранители
J	Автоматический выключатель и предохранители
К	Автоматический выключатель, клеммы разделения нагрузки и предохранители

[10] C	иловые клеммы и пуска	тели		
двига	теля (символ 19)			
Χ	Стандартный ввод кабе	пя		
F1, F2,	F3, F4, F10, F11, F12, F13 u F18	mun	оразм	перы:
Е	Силовые клеммы с защи			
_	предохранителями 30 А			
F	Силовые клеммы с защи предохранителями 30А		ILLEIM	
·	пускателем двигателя 2,			
	Силовые клеммы с защи	той		
G	предохранителями 30 А пускателем двигателя 4-			١
	Силовые клеммы с защи			
Н	предохранителями 30А		НЫМ	
	пускателем двигателя 6,			
	Силовые клеммы с защи			
J	предохранителями 30А пускателем двигателя 10			
K	Два 2.5-4 А ручных пуска			теля
L	Два 4-6.3 А ручных пуска			
M	Два 6.3-10 А ручных пуска			
N	Два 10-16 А ручных пуска			
[11] [итание 24 В и внешний і			
темпе	ературы (символ 20)			
Χ	Без опции			
F1, F2,	F3, F4, F10, F11, F12, F13 u F18	mun	оразм	перы:
G	5 A 24 В источник питан		внеш	ний
Н	мониторинг температур 5 А 24 В источник питан			
J			12TV	.LI
K	Внешний мониторинг те			ומי
	Стандартные клеммы дв 5 A 24 B источник питан		CIM	
L	стандартные клеммы дв		еля	
М	Внешний мониторинг те			ыи
101	стандартные клеммы дв			
N	5 A 24 B источник питан мониторинг температур		ешни	1Й
IN	стандартные клеммы дв		еля	
[12] C	пециальная версия <i>(сим</i>)
SXXX	Нет опции			
[13] Я	зык панели оператора (симв	ол 25)
	Стандартные языки - Ан			
Χ	немецкий, французский			1й,
[14].6	датский, итальянский и етевые опции (символ 2	•	VNINI'	
[1-]	етевые опции (символ 2	6-27) FC	FC	FC
		302	202	102
AX	Нет опции			
A0	MCA 101 Profi bus DP V1			
A4	MCA 104 DeviceNet			
A6	MCA 105 CAN Open			
AG	MCA 108 LonWorks			
AJ	MCA 109 BACNet			
AT	MCA 113 Profi bus			
Al	конвертор VLT® 3000			
AU	MCA 114 Profi bus			
, 10	конвертор VLT® 5000			

AL MCA 120 Profi net SRT AN MCA 121 Ethernet IP

AQ MCA 122 Modbus TCP

151	Трименение <i>(символ 28-2</i>	99)		
	ipililerierire (edinoon 20 2	FC	FC	FC
		302	202	102
ВХ	Без опции			
	МСВ 109 Аналоговый			
ВО	вход/выход и резерв-			
	ное питание для часов реального времени			
	МСВ 112 РТС плата			
B2	термистора			
B4	МСВ 114 VLT® плата			
D4	входов датчиков	_	_	
BK	МСВ 101 Ввод/вывод			
00	общего назначения		_	
BP	МСВ 105 расширение реле			
BR	МСВ 102 CL энкодер			
BU	МСВ 103 резольвер			
BY	MCO 101 расширенный каскадный контроллер			
	МСВ 108 интерфейс			
ΒZ	ПЛК повышенной			
	надежности			
[16] ነ	/правление движением <i>(</i>	симв	ол 30)-31,
		FC	FC	FC
CX	Нет опции	302	202	102
CX	·	-	-	
C4	MCO 305 программиру- емый контроллер			
	движения			
C4	МСО 350 контролер			
- '	синхронизации			
C4	MCO 351 контролер позиционирования			
171.	позиционирования Расширение реле <i>(симво</i> л	4 5 2)		
1/11	асширение реле (симво)	132)		
		FC	FC	FC
		FC 302	FC 202	FC 102
X	Нет			
	МСВ 113 плата			
X R	МСВ 113 плата расширения релейных			
R	МСВ 113 плата расширения релейных выходов			
	МСВ 113 плата расширения релейных			
R 5 [18] Г	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен	302 ■	202	
R 5 [18] Г	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер	302 ше вол 3.	202	
R 5 [18] Г	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен	302 ше 30л 3.	202 3-34)	102
R 5 [18] Г	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Трограммное обеспечен вления движением (симе	302 ше вол 3.	202	102
R 5	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен	302 ше 30л 3.	202 3-34)	102
R 5	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода	302 ше 30л 3.	202 3-34)	102
R 5 [18] Г /пра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции	302 ше 30л 3.	202 3-34)	102
R 5 [18] Г упра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода	302 ше 30л 3.	202 3-34)	102
R 5 [18] Гупра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Институт (симе институт) потребует работы опытного программиста МСО 350 контролер синх-	302 ше 30л 3.	202 3-34)	102
R 5 [18] Г упра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выби-	302 ше 30л 3.	202 3-34)	102
R 5 [18] Гупра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16)	302 ше 30л 3.	202 3-34)	102
R 5 [18] [1ympa XXX	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер	302 ше 30л 3.	202 3-34)	102
R 5 [18] Гупра	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер пограммное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиционирования (нужно выбирать С4 в	302 ше 30л 3.	202 3-34)	102
R 5 [18] [1ympa XXX	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер программное обеспечен вления движением (сима Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер сихронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования	302 ше 30л 3.	202 3-34)	102
R 5 [18] [1ympa XXX	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Интеритерия) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 352 плата	302 ше 30л 3.	202 3-34)	102
R 5 [18] [19] F 11 12 [19] F	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Инет опции Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 352 плата центральной намотки Резервное питание контр	302	3-34) FC 202	102
R 5 [18] [18] [19] [19] [19] [19] [19] [19] [19] [19	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Институт (симе Институт) (симе	302 Воол 33 FC 302	202 3-34) FC 202	FC 102
R 5 [18] [18] [19] [19] [19] [19] [19] [19] [19] [19	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Инет опции Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 352 плата центральной намотки Резервное питание контр	302	3-34) FC 202	FC 102
R 5 [18] [18] [19] [19] [19] [19] [19] [19] [19] [19	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Инет опции Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 352 плата центральной намотки Резервное питание контр	302 В 307 33 БС 302	3-34) FC 202	FC 102
R 5 [18] [ynpa XX 10 11 12 [19] [Kapti	МСВ 113 плата расширения релейных выходов МСО 102 улучшенный каскадный контроллер Программное обеспечен вления движением (симе Примечание: опция С4 в позиции кода (16) без ПО в позиции (18) потребует работы опытного программиста МСО 350 контролер синхронизации (нужно выбирать С4 в позиции (16) МСО 351 контролер позиционирования (нужно выбирать С4 в позиции (16) МСО 352 плата центральной намотки Резервное питание контрон (символ 35-36)	302 В 307 33 БС 302	3-34) FC 202	FC 1022

Сертификаты

Частотные преобразователи и устройства плавного пуска имеют сертификаты соответствия. Помимо этого, продукция «Данфосс» имеет специальные сертификаты для применений в судовой и пищевой промышленности, на химически опасных производствах, в ядерных установках.

Высокое качество продукции

Вы сможете избежать нежелательных простоев, связанных с выходов из строя оборудования. Все заводы проходят сертификацию согласно стандарту ISO 14001. Представительство имеет сертификаты менеджмента качества ISO 9001, ISO 14001.

Аппаратные средства, программное обеспечение, силовые модули, печатные платы и др. производятся на заводах «Данфосс» самостоятельно. Все это гарантирует высокое качество и надежность приводов VLT.

Энергосбережение

С приводами VLT вы сможете экономить большое количество электроэнергии и окупить затраченные средства менее чем за два года. Наиболее заметно экономия энергопотребления проявляется в применениях с насосами и вентиляторами.

Преимущества "Данфосс"

Компания Danfoss является мировым лидером среди производителей преобразователей частоты и устройств плавного пуска и продолжает наращивать свое присутствие на рынке.

Специализация на приводах

Слово «специализация» является определяющим с 1968 года, когда Компания Danfoss представила первый в мире регулируемый привод для двигателей переменного тока, изготовленный серийно, и назвала его VLT®.

Две тысячи пятьсот работников компании занимаются разработкой, изготовлением, продажей и обслуживанием приводов и устройств плавного пуска более чем в ста странах, специализируясь только на приводах и устройствах плавного пуска.

«Данфосс» в СНГ

С 1993 года отдел силовой электроники «Данфосс» осуществляет продажи, техническую поддержку и сервис преобразователей частоты и устройств плавного пуска на территории России, Белоруссии, Украины и Казахстана. Широкая география местоположений сервисных центров гарантирует оказание технической поддержки в кратчайшие сроки. Действуют специализированные учебные центры, в которых осуществляется подготовка специалистов компаний-заказчиков.

Индивидуальное исполнение

Вы можете выбрать продукт полностью отвечающий Вашим требованиям, так как преобразователи частоты и устройства плавного пуска VLT имеют большое количество вариантов исполнения (более 20 000 видов). Вы можете легко и быстро подобрать нужную вам комбинацию при помощи программы подбора привода «Конфигуратор VLT».

Быстрые сроки поставки

Эффективное и гибкое производство в сочетании с развитой логистикой позволяют обеспечить кратчайшие сроки поставки продукции в любых конфигурациях. Помимо этого, представительствами поддерживаются склады в странах СНГ.

Развитая сеть партнеров в СНГ

Развитая сеть партнеров по сервису и продажам по СНГ позволяет осуществлять на высоком уровне техническую поддержку и минимизировать нежелательный простой технологического оборудования в случае поломки.

Компания имеет более 40 сервисных партнеров в крупных городах, поддерживается склад запчастей.

Адрес:

ООО «Данфосс», Россия, 143581, Московская обл., Истринский район, сел./пос. Павло-Слободское, деревня Лешково, 217, Телефон: (495) 792-57-57, факс: (495) 792-57-63. E-mail: mc@danfoss.ru, www.danfoss.ru/VLT

Danfoss не несет ответственности за возможные ошибки в каталогах, брошюрах и других печатных материалах. Danfoss оставляет за собой право вносить изменения в продукцию без предварительного уведомления. Это относится также к уже заказанной продукции, если только вносимые изменения не требуют соответствующей коррекции уже согласованных спецификаций. Все торговые марки в данном документе являются собственностью соответствующих компаний. Название и логотип Danfoss являются собственностью компании Danfoss A/S. Все права защищены.

